Kurlov, D. V., Matveenko, S. I., Gritsev, V., & Shlyapnikov, G. V. (2019). One-dimensional two-component fermions with contact even-wave repulsion and SU(2)-symmetry-breaking near-resonant odd-wave attraction. Physical Review A, 99(4), [043631]. https://doi.org/10.1103/PhysRevA.99.043631[details]
Bertoli, G., Michal, V. P., Altshuler, B. L., & Shlyapnikov, G. V. (2018). Finite-Temperature Disordered Bosons in Two Dimensions. Physical Review Letters, 121(3), [030403]. https://doi.org/10.1103/PhysRevLett.121.030403[details]
Deng, X., Kravtsov, V. E., Shlyapnikov, G. V., & Santos, L. (2018). Duality in Power-Law Localization in Disordered One-Dimensional Systems. Physical Review Letters, 120(11), [110602]. https://doi.org/10.1103/PhysRevLett.120.110602[details]
Fedorov, A. K., Yudson, V. I., & Shlyapnikov, G. V. (2018). Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules. AIP Conference Proceedings, 1936, [020022]. https://doi.org/10.1063/1.5025460[details]
Kurlov, D. V., & Shlyapnikov, G. V. (2017). Two-body relaxation of spin-polarized fermions in reduced dimensionalities near a p-wave Feshbach resonance. Physical Review A, 95(3), [032710]. https://doi.org/10.1103/PhysRevA.95.032710[details]
Lee, H., Matveenko, S. I., Wang, D-W., & Shlyapnikov, G. V. (2017). Fulde-Ferrell-Larkin-Ovchinnikov state in bilayer dipolar systems. Physical Review A, 96(6), [0616202(R)]. https://doi.org/10.1103/PhysRevA.96.061602[details]
Zeng, Y., Xu, P., He, X., Liu, Y., Liu, M., Wang, J., ... Zhan, M. (2017). Entangling Two Individual Atoms of Different Isotopes via Rydberg Blockade. Physical Review Letters, 119(16), [160502]. https://doi.org/10.1103/PhysRevLett.119.160502[details]
Deng, X., Altshuler, B. L., Shlyapnikov, G. V., & Santos, L. (2016). Quantum Levy Flights and Multifractality of Dipolar Excitations in a Random System. Physical Review Letters, 117(2), [020401]. https://doi.org/10.1103/PhysRevLett.117.020401[details]
Michal, V. P., Aleiner, I. L., Altshuler, B. L., & Shlyapnikov, G. V. (2016). Finite-temperature fluid-insulator transition of strongly interacting 1D disordered bosons. Proceedings of the National Academy of Sciences of the United States of America, 113(31), E4455-E4459. https://doi.org/10.1073/pnas.1606908113[details]
2015
Lu, Z. K., Li, Y., Petrov, D. S., & Shlyapnikov, G. V. (2015). Stable Dilute Supersolid of Two-Dimensional Dipolar Bosons. Physical Review Letters, 115(7), [075303]. https://doi.org/10.1103/PhysRevLett.115.075303[details]
Michal, V. P., Altshuler, B. L., & Shlyapnikov, G. V. (2014). Delocalization of Weakly Interacting Bosons in a 1D Quasiperiodic Potential. Physical Review Letters, 113(4), [045304]. https://doi.org/10.1103/PhysRevLett.113.045304[details]
Papoular, D. J., Bize, S., Clairon, A., Marion, H., Kokkelmans, S. J. J. M. F., & Shlyapnikov, G. V. (2012). Feshbach resonances in cesium at ultralow static magnetic fields. Physical Review A, 86(4), 040701. https://doi.org/10.1103/PhysRevA.86.040701[details]
Drummond, N. D., Cooper, N. R., Needs, R. J., & Shlyapnikov, G. V. (2011). Quantum Monte Carlo calculation of the zero-temperature phase diagram of the two- component fermionic gas in two dimensions. Physical Review B, 83(19). https://doi.org/10.1103/PhysRevB.83.195429[details]
Matveenko, S. I., & Shlyapnikov, G. V. (2011). Tkachenko modes and their damping in the vortex lattice regime of rapidly rotating bosons. Physical Review A, 83(3). https://doi.org/10.1103/PhysRevA.83.033604[details]
Aleiner, I. L., Altshuler, B. L., & Shlyapnikov, G. V. (2010). A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nature Physics, 6(11), 900-904. https://doi.org/10.1038/NPHYS1758[details]
Colomé-Tatché, M., Matveenko, S. I., & Shlyapnikov, G. V. (2010). Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model. Physical Review A, 81(1), 013611. https://doi.org/10.1103/PhysRevA.81.013611[details]
Pikovski, A., Klawunn, M., Shlyapnikov, G. V., & Santos, L. (2010). Interlayer superfluidity in bilayer systems of fermionic polar molecules. Physical Review Letters, 105(21), 215302. https://doi.org/10.1103/PhysRevLett.105.215302[details]
Essler, F. H. L., Shlyapnikov, G. V., & Tsvelik, A. M. (2009). On the spin-liquid phase of one-dimensional spin-1 bosons. Journal of Statistical Mechanics : Theory and Experiment, 2009, [P02027]. https://doi.org/10.1088/1742-5468/2009/02/P02027[details]
Matveenko, S. I., Kovrizhin, D., Ouvry, S., & Shlyapnikov, G. V. (2009). Vortex structures in rotating Bose-Einstein condensates. Physical Review A, 80(6), 063621. https://doi.org/10.1103/PhysRevA.80.063621[details]
Petrov, D. S., Salomon, C., & Shlyapnikov, G. V. (2009). Molecular regimes in ultracold Fermi gases. In R. V. Krems, W. C. Stwalley, & B. Friedrich (Eds.), Cold molecules: Theory, experiment, applications (pp. 355-398). Boca Raton, FL: CRC Press. [details]
Vekua, T., Matveenko, S. I., & Shlyapnikov, G. V. (2009). Curvature effects on magnetic susceptibility of 1D attractive two component fermions. JETP Letters, 90(4), 289-294. https://doi.org/10.1134/S0021364009160139[details]
2008
Marcelis, B., Kokkelmans, S. J. J. M. F., Shlyapnikov, G. V., & Petrov, D. S. (2008). Collisional properties of weakly bound heteronuclear dimers. Physical Review A, 77(3), 032707. https://doi.org/10.1103/PhysRevA.77.032707[details]
De UvA maakt gebruik van cookies en daarmee vergelijkbare technieken voor het functioneren, meten en optimaliseren van de website. Ook worden er cookies geplaatst om bijv. YouTube filmpjes te kunnen tonen en voor marketingdoeleinden. Deze laatste categorie betreffen de tracking cookies. Uw internetgedrag kan worden gevolgd door middel van deze tracking cookies. Door op “Accepteer alle cookies” te klikken gaat u hiermee akkoord. Lees ook het UvA Privacy statement
Noodzakelijk
Cookies noodzakelijk voor het basisfunctioneren van de website. Deze cookies worden bijvoorbeeld ingezet om het inloggen voor studenten en medewerkers mogelijk te maken.
Noodzakelijk & Optimalisatie
Cookies die worden geplaatst om anoniem gegevens te verzamelen over het gebruik van de website om deze te verbeteren.
Noodzakelijk & Optimalisatie & Marketing
Cookies die in staat stellen bezoekers te volgen en van gepersonaliseerde advertenties te voorzien. Externe advertentienetwerken verzamelen individuele gegevens over internetgedrag. Selecteer deze categorie om YouTube video's te kunnen kijken.