For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Kurlov, D. V., Matveenko, S. I., Gritsev, V., & Shlyapnikov, G. V. (2019). One-dimensional two-component fermions with contact even-wave repulsion and SU(2)-symmetry-breaking near-resonant odd-wave attraction. Physical Review A, 99(4), [043631]. https://doi.org/10.1103/PhysRevA.99.043631[details]
Bertoli, G., Michal, V. P., Altshuler, B. L., & Shlyapnikov, G. V. (2018). Finite-Temperature Disordered Bosons in Two Dimensions. Physical Review Letters, 121(3), [030403]. https://doi.org/10.1103/PhysRevLett.121.030403[details]
Deng, X., Kravtsov, V. E., Shlyapnikov, G. V., & Santos, L. (2018). Duality in Power-Law Localization in Disordered One-Dimensional Systems. Physical Review Letters, 120(11), [110602]. https://doi.org/10.1103/PhysRevLett.120.110602[details]
Fedorov, A. K., Yudson, V. I., & Shlyapnikov, G. V. (2018). Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules. AIP Conference Proceedings, 1936, [020022]. https://doi.org/10.1063/1.5025460[details]
Kurlov, D. V., & Shlyapnikov, G. V. (2017). Two-body relaxation of spin-polarized fermions in reduced dimensionalities near a p-wave Feshbach resonance. Physical Review A, 95(3), [032710]. https://doi.org/10.1103/PhysRevA.95.032710[details]
Lee, H., Matveenko, S. I., Wang, D-W., & Shlyapnikov, G. V. (2017). Fulde-Ferrell-Larkin-Ovchinnikov state in bilayer dipolar systems. Physical Review A, 96(6), [0616202(R)]. https://doi.org/10.1103/PhysRevA.96.061602[details]
Zeng, Y., Xu, P., He, X., Liu, Y., Liu, M., Wang, J., ... Zhan, M. (2017). Entangling Two Individual Atoms of Different Isotopes via Rydberg Blockade. Physical Review Letters, 119(16), [160502]. https://doi.org/10.1103/PhysRevLett.119.160502[details]
Deng, X., Altshuler, B. L., Shlyapnikov, G. V., & Santos, L. (2016). Quantum Levy Flights and Multifractality of Dipolar Excitations in a Random System. Physical Review Letters, 117(2), [020401]. https://doi.org/10.1103/PhysRevLett.117.020401[details]
Michal, V. P., Aleiner, I. L., Altshuler, B. L., & Shlyapnikov, G. V. (2016). Finite-temperature fluid-insulator transition of strongly interacting 1D disordered bosons. Proceedings of the National Academy of Sciences of the United States of America, 113(31), E4455-E4459. https://doi.org/10.1073/pnas.1606908113[details]
2015
Lu, Z. K., Li, Y., Petrov, D. S., & Shlyapnikov, G. V. (2015). Stable Dilute Supersolid of Two-Dimensional Dipolar Bosons. Physical Review Letters, 115(7), [075303]. https://doi.org/10.1103/PhysRevLett.115.075303[details]
Michal, V. P., Altshuler, B. L., & Shlyapnikov, G. V. (2014). Delocalization of Weakly Interacting Bosons in a 1D Quasiperiodic Potential. Physical Review Letters, 113(4), [045304]. https://doi.org/10.1103/PhysRevLett.113.045304[details]
Papoular, D. J., Bize, S., Clairon, A., Marion, H., Kokkelmans, S. J. J. M. F., & Shlyapnikov, G. V. (2012). Feshbach resonances in cesium at ultralow static magnetic fields. Physical Review A, 86(4), 040701. https://doi.org/10.1103/PhysRevA.86.040701[details]
Drummond, N. D., Cooper, N. R., Needs, R. J., & Shlyapnikov, G. V. (2011). Quantum Monte Carlo calculation of the zero-temperature phase diagram of the two- component fermionic gas in two dimensions. Physical Review B, 83(19). https://doi.org/10.1103/PhysRevB.83.195429[details]
Matveenko, S. I., & Shlyapnikov, G. V. (2011). Tkachenko modes and their damping in the vortex lattice regime of rapidly rotating bosons. Physical Review A, 83(3). https://doi.org/10.1103/PhysRevA.83.033604[details]
Aleiner, I. L., Altshuler, B. L., & Shlyapnikov, G. V. (2010). A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nature Physics, 6(11), 900-904. https://doi.org/10.1038/NPHYS1758[details]
Colomé-Tatché, M., Matveenko, S. I., & Shlyapnikov, G. V. (2010). Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model. Physical Review A, 81(1), 013611. https://doi.org/10.1103/PhysRevA.81.013611[details]
Pikovski, A., Klawunn, M., Shlyapnikov, G. V., & Santos, L. (2010). Interlayer superfluidity in bilayer systems of fermionic polar molecules. Physical Review Letters, 105(21), 215302. https://doi.org/10.1103/PhysRevLett.105.215302[details]
Essler, F. H. L., Shlyapnikov, G. V., & Tsvelik, A. M. (2009). On the spin-liquid phase of one-dimensional spin-1 bosons. Journal of Statistical Mechanics : Theory and Experiment, 2009, [P02027]. https://doi.org/10.1088/1742-5468/2009/02/P02027[details]
Matveenko, S. I., Kovrizhin, D., Ouvry, S., & Shlyapnikov, G. V. (2009). Vortex structures in rotating Bose-Einstein condensates. Physical Review A, 80(6), 063621. https://doi.org/10.1103/PhysRevA.80.063621[details]
Petrov, D. S., Salomon, C., & Shlyapnikov, G. V. (2009). Molecular regimes in ultracold Fermi gases. In R. V. Krems, W. C. Stwalley, & B. Friedrich (Eds.), Cold molecules: Theory, experiment, applications (pp. 355-398). Boca Raton, FL: CRC Press. [details]
Vekua, T., Matveenko, S. I., & Shlyapnikov, G. V. (2009). Curvature effects on magnetic susceptibility of 1D attractive two component fermions. JETP Letters, 90(4), 289-294. https://doi.org/10.1134/S0021364009160139[details]
2008
Marcelis, B., Kokkelmans, S. J. J. M. F., Shlyapnikov, G. V., & Petrov, D. S. (2008). Collisional properties of weakly bound heteronuclear dimers. Physical Review A, 77(3), 032707. https://doi.org/10.1103/PhysRevA.77.032707[details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.