Colisson, L., Muguruza, G., & Speelman, F. (2023). Oblivious Transfer from Zero-Knowledge Proofs: Or How to Achieve Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge Proofs on Quantum States. In J. Guo, & R. Steinfeld (Eds.), Advances in Cryptology – ASIACRYPT 2023: 29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4–8, 2023 : proceedings (pp. 3-38). (Lecture Notes in Computer Science; Vol. 14445). Springer. https://doi.org/10.1007/978-981-99-8742-9_1
Escolà-Farràs, L., & Speelman, F. (2023). Single-Qubit Loss-Tolerant Quantum Position Verification Protocol Secure against Entangled Attackers. Physical Review Letters, 131(14), Article 140802. https://doi.org/10.1103/PhysRevLett.131.140802[details]
Buhrman, H., Loff, B., Patro, S., & Speelman, F. (2022). Limits of Quantum Speed-Ups for Computational Geometry and Other Problems: Fine-Grained Complexity via Quantum Walks. In M. Braverman (Ed.), 13th Innovations in Theoretical Computer Science Conference: ITCS 2022, January 31-February 3, 2022, Berkeley, CA, USA Article 31 (Leibniz International Proceedings in Informatics; Vol. 215). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ITCS.2022.31[details]
Buhrman, H., Loff, B., Patro, S., & Speelman, F. (2022). Memory Compression with Quantum Random-Access Gates. In F. Le Gall, & T. Morimae (Eds.), 17th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2022, July 11–15, 2022, Urbana Champaign, Illinois, USA Article 10 (Leibniz International Proceedings in Informatics; Vol. 232). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2022.10[details]
Weggemans, J. R., Urech, A., Rausch, A., Spreeuw, R., Boucherie, R., Schreck, F., Schoutens, K., Minář, J., & Speelman, F. (2022). Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach. Quantum, 6, Article 687. https://doi.org/10.22331/Q-2022-04-13-687[details]
Buhrman, H., Patro, S., & Speelman, F. (2021). A Framework of Quantum Strong Exponential-Time Hypotheses. In M. Bläser, & B. Monmege (Eds.), 38th International Symposium on Theoretical Aspects of Computer Science: STACS 2021, March 16–19, 2021, Saarbrücken, Germany (Virtual Conference) Article 19 (Leibniz International Proceedings in Informatics; Vol. 187). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2021.19[details]
Buhrman, H., Koucký, M., Loff, B., & Speelman, F. (2018). Catalytic Space: Non-determinism and Hierarchy. Theory of Computing Systems, 62(1), 116-135. Advance online publication. https://doi.org/10.1007/s00224-017-9784-7[details]
Dulek, Y., & Speelman, F. (2018). Quantum Ciphertext Authentication and Key Recycling with the Trap Code. In S. Jeffery (Ed.), 13th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2018, July 16-18, 2018, Sydney, Australia Article 1 (Leibniz International Proceedings in Informatics; Vol. 111). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2018.1[details]
Alagic, G., Dulek, Y., Schaffner, C., & Speelman, F. (2017). Quantum Fully Homomorphic Encryption with Verification. In T. Takagi, & T. Peyrin (Eds.), Advances in Cryptology – ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017 : proceedings (Vol. 1, pp. 438-467). (Lecture Notes in Computer Science; Vol. 10624). Springer. https://doi.org/10.1007/978-3-319-70694-8_16[details]
2016
Brody, J., Buhrman, H., Koucký, M., Loff, B., Speelman, F., & Vereshchagin, N. (2016). Towards a Reverse Newman's Theorem in Interactive Information Complexity. Algorithmica, 76(3), 749-781. Advance online publication. https://doi.org/10.1007/s00453-015-0112-9[details]
Buhrman, H., Czekaj, Ł., Grudka, A., Horodecki, M., Horodecki, P., Markiewicz, M., Speelman, F., & Strelchuk, S. (2016). Quantum communication complexity advantage implies violation of a Bell inequality. Proceedings of the National Academy of Sciences of the United States of America, 113(12), 3191-3196. https://doi.org/10.1073/pnas.1507647113[details]
Buhrman, H., Koucký, M., Loff, B., & Speelman, F. (2016). Catalytic space: Non-determinism and hierarchy. In N. Ollinger, & H. Vollmer (Eds.), 33rd Symposium on Theoretical Aspects of Computer Science: STACS'16, February 17-20, 2016, Orléans, France Article 24 (Leibniz International Proceedings in Informatics; Vol. 47). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2016.24[details]
Dulek, Y., Schaffner, C., & Speelman, F. (2016). Quantum homomorphic encryption for polynomial-sized circuits. In M. Robshaw, & J. Katz (Eds.), Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016 : proceedings (Vol. 3, pp. 3-32). (Lecture Notes in Computer Science; Vol. 9816). Springer. https://doi.org/10.1007/978-3-662-53015-3_1[details]
Speelman, F. (2016). Instantaneous non-local computation of low T-depth quantum circuits. In A. Broadbent (Ed.), 11th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2016, September 27-29, 2016, Berlin, Germany Article 9 (Leibniz International Proceedings in Informatics; Vol. 61). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2016.9[details]
Briët, J., Buhrman, H., Leung, D., Piovesan, T., & Speelman, F. (2015). Round Elimination in Exact Communication Complexity. In S. Beigi, & R. König (Eds.), 10th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC'15, May 20-22, 2015, Brussels, Belgium (pp. 206-225). (Leibniz International Proceedings in Informatics; Vol. 44). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2015.206[details]
Buhrman, H., Cleve, R., Koucký, M., Loff, B., & Speelman, F. (2014). Computing with a full memory: Catalytic space. In STOC '14: proceedings of the 2014 ACM Symposium on Theory of Computing : New York, New York, USA, May 31, 2014-June 3, 2014 (pp. 857-866). ACM. https://doi.org/10.1145/2591796.2591874[details]
2013
Brody, J., Buhrman, H., Koucký, M., Loff, B., Speelman, F., & Vereshchagin, N. (2013). Towards a reverse Newman's theorem in interactive information complexity. In CCC 2013 : 2013 IEEE Conference on Computational Complexity: proceedings : 5-7 June 2013, Palo Alto, California, USA (pp. 24-33). IEEE. https://doi.org/10.1109/CCC.2013.12[details]
Buhrman, H., Fehr, S., Schaffner, C., & Speelman, F. (2013). The Garden-Hose Model. In ITCS'13: proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science : January 9-12, 2013, Berkeley, California, USA (pp. 145-157). Association for Computing Machinery. https://doi.org/10.1145/2422436.2422455[details]
Buhrman, H., Czekaj, Ł., Grudka, A., Horodecki, M., Horodecki, P., Markiewicz, M., Speelman, F., & Strelchuk, S. (2016). Erratum: Quantum communication complexity advantage implies violation of a Bell inequality. Proceedings of the National Academy of Sciences of the United States of America, 113(21), Article E3050. https://doi.org/10.1073/pnas.1606259113
Verduyn Lunel, P. H. (2024). Quantum position verification: Loss-tolerant protocols and fundamental limits. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.