For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Buhrman, H., Loff, B., Patro, S., & Speelman, F. (2022). Limits of Quantum Speed-Ups for Computational Geometry and Other Problems: Fine-Grained Complexity via Quantum Walks. In M. Braverman (Ed.), 13th Innovations in Theoretical Computer Science Conference: ITCS 2022, January 31-February 3, 2022, Berkeley, CA, USA [31] (Leibniz International Proceedings in Informatics; Vol. 215). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ITCS.2022.31[details]
Buhrman, H., Loff, B., Patro, S., & Speelman, F. (2022). Memory Compression with Quantum Random-Access Gates. In F. Le Gall, & T. Morimae (Eds.), 17th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2022, July 11–15, 2022, Urbana Champaign, Illinois, USA [10] (Leibniz International Proceedings in Informatics; Vol. 232). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2022.10[details]
Weggemans, J. R., Urech, A., Rausch, A., Spreeuw, R., Boucherie, R., Schreck, F., Schoutens, K., Minář, J., & Speelman, F. (2022). Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach. Quantum, 6, [687]. https://doi.org/10.22331/Q-2022-04-13-687[details]
Buhrman, H., Patro, S., & Speelman, F. (2021). A Framework of Quantum Strong Exponential-Time Hypotheses. In M. Bläser, & B. Monmege (Eds.), 38th International Symposium on Theoretical Aspects of Computer Science: STACS 2021, March 16–19, 2021, Saarbrücken, Germany (Virtual Conference) [19] (Leibniz International Proceedings in Informatics; Vol. 187). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2021.19[details]
Buhrman, H., Koucký, M., Loff, B., & Speelman, F. (2018). Catalytic Space: Non-determinism and Hierarchy. Theory of Computing Systems, 62(1), 116-135. https://doi.org/10.1007/s00224-017-9784-7[details]
Dulek, Y., & Speelman, F. (2018). Quantum Ciphertext Authentication and Key Recycling with the Trap Code. In S. Jeffery (Ed.), 13th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2018, July 16-18, 2018, Sydney, Australia [1] (Leibniz International Proceedings in Informatics; Vol. 111). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.TQC.2018.1[details]
Alagic, G., Dulek, Y., Schaffner, C., & Speelman, F. (2017). Quantum Fully Homomorphic Encryption with Verification. In T. Takagi, & T. Peyrin (Eds.), Advances in Cryptology – ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017 : proceedings (Vol. 1, pp. 438-467). (Lecture Notes in Computer Science; Vol. 10624). Springer. https://doi.org/10.1007/978-3-319-70694-8_16[details]
2016
Brody, J., Buhrman, H., Koucký, M., Loff, B., Speelman, F., & Vereshchagin, N. (2016). Towards a Reverse Newman's Theorem in Interactive Information Complexity. Algorithmica, 76(3), 749-781. https://doi.org/10.1007/s00453-015-0112-9[details]
Buhrman, H., Czekaj, Ł., Grudka, A., Horodecki, M., Horodecki, P., Markiewicz, M., Speelman, F., & Strelchuk, S. (2016). Quantum communication complexity advantage implies violation of a Bell inequality. Proceedings of the National Academy of Sciences of the United States of America, 113(12), 3191-3196. https://doi.org/10.1073/pnas.1507647113[details]
Buhrman, H., Koucký, M., Loff, B., & Speelman, F. (2016). Catalytic space: Non-determinism and hierarchy. In N. Ollinger, & H. Vollmer (Eds.), 33rd Symposium on Theoretical Aspects of Computer Science: STACS'16, February 17-20, 2016, Orléans, France [24] (Leibniz International Proceedings in Informatics; Vol. 47). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.STACS.2016.24[details]
Dulek, Y., Schaffner, C., & Speelman, F. (2016). Quantum homomorphic encryption for polynomial-sized circuits. In M. Robshaw, & J. Katz (Eds.), Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016 : proceedings (Vol. 3, pp. 3-32). (Lecture Notes in Computer Science; Vol. 9816). Springer. https://doi.org/10.1007/978-3-662-53015-3_1[details]
Speelman, F. (2016). Instantaneous non-local computation of low T-depth quantum circuits. In A. Broadbent (Ed.), 11th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2016, September 27-29, 2016, Berlin, Germany [9] (Leibniz International Proceedings in Informatics; Vol. 61). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.TQC.2016.9[details]
Briët, J., Buhrman, H., Leung, D., Piovesan, T., & Speelman, F. (2015). Round Elimination in Exact Communication Complexity. In S. Beigi, & R. König (Eds.), 10th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC'15, May 20-22, 2015, Brussels, Belgium (pp. 206-225). (Leibniz International Proceedings in Informatics; Vol. 44). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.TQC.2015.206[details]
Buhrman, H., Cleve, R., Koucký, M., Loff, B., & Speelman, F. (2014). Computing with a full memory: Catalytic space. In STOC '14: proceedings of the 2014 ACM Symposium on Theory of Computing : New York, New York, USA, May 31, 2014-June 3, 2014 (pp. 857-866). ACM. https://doi.org/10.1145/2591796.2591874[details]
2013
Brody, J., Buhrman, H., Koucký, M., Loff, B., Speelman, F., & Vereshchagin, N. (2013). Towards a reverse Newman's theorem in interactive information complexity. In CCC 2013 : 2013 IEEE Conference on Computational Complexity: proceedings : 5-7 June 2013, Palo Alto, California, USA (pp. 24-33). IEEE. https://doi.org/10.1109/CCC.2013.12[details]
Buhrman, H., Fehr, S., Schaffner, C., & Speelman, F. (2013). The Garden-Hose Model. In ITCS'13: proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science : January 9-12, 2013, Berkeley, California, USA (pp. 145-157). Association for Computing Machinery. https://doi.org/10.1145/2422436.2422455[details]
2016
Buhrman, H., Czekaj, Ł., Grudka, A., Horodecki, M., Horodecki, P., Markiewicz, M., Speelman, F., & Strelchuk, S. (2016). Erratum: Quantum communication complexity advantage implies violation of a Bell inequality. Proceedings of the National Academy of Sciences of the United States of America, 113(21), [E3050]. https://doi.org/10.1073/pnas.1606259113
The UvA uses cookies to ensure the basic functionality of the site and for statistical and optimisation purposes. Cookies are also placed to display third-party content and for marketing purposes. Click 'Accept all cookies' to consent to the placement of all cookies, or choose 'Decline' to only accept functional and analytical cookies. Also read the UvA Privacy statement.