Dekker, M., Kloibhofer, J., Marti, J., & Venema, Y. (2023). Proof Systems for the Modal μ-Calculus Obtained by Determinizing Automata. In R. Ramanayake, & J. Urban (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods: 32nd International Conference, TABLEAUX 2023, Prague, Czech Republic, September 18–21, 2023 : proceedings (pp. 242-259). (Lecture Notes in Computer Science; Vol. 14278), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-43513-3_14[details]
Rooduijn, J., & Venema, Y. (2023). Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus. In H. H. Hansen, A. Scedrov, & R. J. G. B. de Queiroz (Eds.), Logic, Language, Information, and Computation: 29th International Workshop, WoLLIC 2023, Halifax, NS, Canada, July 11–14, 2023 : proceedings (pp. 318-335). (Lecture Notes in Computer Science; Vol. 13923), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-031-39784-4_20, https://doi.org/10.48550/arXiv.2307.01773[details]
Carreiro, F., Facchini, A., Venema, Y., & Zanasi, F. (2022). Model theory of monadic predicate logic with the infinity quantifier. Archive for Mathematical Logic, 61(3-4), 465-502. https://doi.org/10.1007/s00153-021-00797-0[details]
Kupke, C., Marti, J., & Venema, Y. (2022). Size measures and alphabetic equivalence in the µ-calculus. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science Article 18 The Association for Computing Machinery. https://doi.org/10.1145/3531130.3533339[details]
Kupke, C., Marti, J., & Venema, Y. (2022). Succinct Graph Representations of µ-Calculus Formulas. In F. Manea, & A. Simpson (Eds.), 30th EACSL Annual Conference on Computer Science Logic: CSL 2022, February 14–19, 2022, Göttingen, Germany (Virtual Conference) Article 29 (Leibniz International Proceedings in Informatics; Vol. 216). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2022.29, https://doi.org/10.48550/arXiv.2010.14430[details]
Kupke, C., Marti, J., & Venema, Y. (2021). On the size of disjunctive formulas in the µ-calculus. Electronic Proceedings in Theoretical Computer Science, 346, 291-307. https://doi.org/10.4204/EPTCS.346.19[details]
Marti, J., & Venema, Y. (2021). A Focus System for the Alternation-Free μ-Calculus. In A. Das, & S. Negri (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods: 30th International Conference, TABLEAUX 2021, Birmingham, UK, September 6–9, 2021 : proceedings (pp. 371-388). (Lecture Notes in Computer Science; Vol. 12842), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-86059-2_22[details]
Rooduijn, J., & Venema, Y. (2021). Filtration and canonical completeness for continuous modal µ-calculi. Electronic Proceedings in Theoretical Computer Science, 346, 211-226. https://doi.org/10.4204/EPTCS.346.14[details]
Carreiro, F., Facchini, A., Venema, Y., & Zanasi, F. (2020). The power of the weak. ACM Transactions on Computational Logic, 21(2), Article 15. https://doi.org/10.1145/3372392[details]
2019
Bezhanishvili, G., Bezhanishvili, N., Santoli, T., & Venema, Y. (2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170(11), Article 102714. Advance online publication. https://doi.org/10.1016/j.apal.2019.06.003[details]
Bezhanishvili, N., de Groot, J., & Venema, Y. (2019). Coalgebraic Geometric Logic. In M. Roggenbach, & A. Sokolova (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom Article 7 (Leibniz International Proceedings in Informatics; Vol. 139). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2019.7[details]
Ciancia, V., & Venema, Y. (2019). Ω-Automata: A Coalgebraic Perspective on Regular ω-Languages. In M. Roggenbach, & A. Sokolova (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom Article 5 (Leibniz International Proceedings in Informatics; Vol. 139). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2019.5[details]
Enqvist, S., & Venema, Y. (2019). Disjunctive bases: normal forms and model theory for modal logics. Logical Methods in Computer Science, 15(1), Article 30. https://doi.org/10.23638/LMCS-15(1:30)2019[details]
Enqvist, S., Hansen, H. H., Kupke, C., Marti, J., & Venema, Y. (2019). Completeness for game logic. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019): Vancouver, British Columbia, Canada, 24-27 June 2019 (pp. 307-319). IEEE. https://doi.org/10.1109/LICS.2019.8785676[details]
Enqvist, S., Seifan, F., & Venema, Y. (2019). Completeness for μ-calculi: A coalgebraic approach. Annals of Pure and Applied Logic, 170(5), 578-641. Advance online publication. https://doi.org/10.1016/j.apal.2018.12.004[details]
Milanese, G. C., & Venema, Y. (2019). Closure ordinals for the two-way μ-calculus. In R. Iemhoff, M. Moortgat, & R. de Queiroz (Eds.), Logic, Language, Information, and Computation: 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019 : proceedings (pp. 498-515). (Lecture Notes in Computer Science; Vol. 11541), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-662-59533-6_30[details]
2018
Enqvist, S., Seifan, F., & Venema, Y. (2018). Completeness for the modal μ-calculus: Separating the combinatorics from the dynamics. Theoretical Computer Science, 727, 37-100. https://doi.org/10.1016/j.tcs.2018.03.001[details]
Fontaine, G., & Venema, Y. (2018). Some model theory for the modal μ-calculus: Syntactic characterisations of semantic properties. Logical Methods in Computer Science, 14(1), Article 14. https://doi.org/10.23638/LMCS-14(1:14)2018[details]
Hansen, H. H., Kupke, C., Marti, J., & Venema, Y. (2018). Parity Games and Automata for Game Logic. In A. Madeira, & M. Benevides (Eds.), Dynamic Logic. New Trends and Applications: First International Workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017 : proceedings (pp. 115-132). (Lecture Notes in Computer Science; Vol. 10669). Springer. https://doi.org/10.1007/978-3-319-73579-5_8[details]
Schröder, L., & Venema, Y. (2018). Completeness of flat coalgebraic fixpoint logics. ACM Transactions on Computational Logic, 19(1), Article 4. https://doi.org/10.1145/3157055[details]
2017
Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., & Venema, Y. (2017). Irreducible equivalence relations, Gleason spaces, and de Vries duality. Applied Categorical Structures, 25(3), 381-401. Advance online publication. https://doi.org/10.1007/s10485-016-9434-2[details]
Enqvist, S., & Venema, Y. (2017). Disjunctive Bases: Normal Forms for Modal Logics. In F. Bonchi, & B. König (Eds.), 7th Conference on Algebra and Coalgebra in Computer Science: CALCO 2017, June 14-16, 2017, Ljubljana, Slovenia Article 11 (Leibniz International Proceedings in Informatics; Vol. 72). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2017.11[details]
Enqvist, S., Seifan, F., & Venema, Y. (2016). Completeness for Coalgebraic Fixpoint Logic. In L. Regnier, & J.-M. Talbot (Eds.), Computer Science Logic : CSL 2016, August 29 to September 1, 2016, Marseille, France Article 7 (Leibniz International Proceedings in Informatics; Vol. 62). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2016.7[details]
Marti, J., & Venema, Y. (2015). Lax Extensions of Coalgebra Functors and Their Logic. Journal of Computer and System Sciences, 81(5), 880-900. Advance online publication. https://doi.org/10.1016/j.jcss.2014.12.006[details]
Marti, J., Seifan, F., & Venema, Y. (2015). Uniform Interpolation for Coalgebraic Fixpoint Logic. In L. S. Moss, & P. Sobociński (Eds.), 6th Conference on Algebra and Coalgebra in Computer Science: CALCO'15, June 24-26, 2015, Nijmegen, Netherlands (pp. 238-252). (Leibniz International Proceedings in Informatics; Vol. 35). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2015.238[details]
Carreiro, F., Facchini, A., Venema, Y., & Zanasi, F. (2014). Weak MSO: automata and expressiveness modulo bisimilarity. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS): Vienna, Austria - July 14-18, 2014 Article 27 ACM. https://doi.org/10.1145/2603088.2603101[details]
Venema, Y. (2014). Expressiveness modulo bisimilarity: a coalgebraic perspective. In A. Baltag, & S. Smets (Eds.), Johan van Benthem on Logic and Information Dynamics (pp. 33-65). (Outstanding contributions to logic; Vol. 5). Springer. https://doi.org/10.1007/978-3-319-06025-5_2[details]
Venema, Y., & Vosmaer, J. (2014). Modal Logic and the Vietoris Functor. In G. Bezhanishvili (Ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics (pp. 119-153). (Outstanding contributions to logic; Vol. 4). Springer. https://doi.org/10.1007/978-94-017-8860-1_6[details]
Facchini, A., Venema, Y., & Zanasi, F. (2013). A characterization theorem for the alternation-free fragment of the modal µ-calculus. In Proceedings, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2013 : 25-28 June 2013, New Orleans, Louisiana (pp. 478-487). IEEE Computer Society. https://doi.org/10.1109/LICS.2013.54[details]
Venema, Y. (2013). Cylindric Modal Logic. In H. Andréka, M. Ferenczi, & I. Németi (Eds.), Cylindric-like Algebras and Algebraic Logic (pp. 249-269). (Bolyai Society Mathematical Studies; Vol. 22). Springer. https://doi.org/10.1007/978-3-642-35025-2_12[details]
Venema, Y., Vickers, S., & Vosmaer, J. (2013). Generalised powerlocales via relation lifting. Mathematical Structures in Computer Science, 23(1), 142-199. Advance online publication. https://doi.org/10.1017/S0960129512000229[details]
Ciancia, V., & Venema, Y. (2012). Stream Automata Are Coalgebras. In D. Pattinson, & L. Schröder (Eds.), Coalgebraic Methods in Computer Science: 11th International Workshop, CMCS 2012, colocated with ETAPS 2012, Tallinn, Estonia, March 31 – April 1, 2012 : revised selected papers (pp. 90-108). (Lecture Notes in Computer Science; Vol. 7399). Springer. https://doi.org/10.1007/978-3-642-32784-1_6[details]
Kupke, C., Kurz, A., & Venema, Y. (2012). Completeness for the coalgebraic cover modality. Logical Methods in Computer Science, 8(3), Article 2. https://doi.org/10.2168/LMCS-8(3:2)2012[details]
Marti, J., & Venema, Y. (2012). Lax Extensions of Coalgebra Functors. In D. Pattinson, & L. Schröder (Eds.), Coalgebraic Methods in Computer Science: 11th International Workshop, CMCS 2012, colocated with ETAPS 2012, Tallinn, Estonia, March 31 – April 1, 2012 : revised selected papers (pp. 150-169). (Lecture Notes in Computer Science; Vol. 7399). Springer. https://doi.org/10.1007/978-3-642-32784-1_9[details]
Bergfeld, J., & Venema, Y. (2011). Model constructions for Moss' coalgebraic logic. In A. Corradini, B. Klin, & C. Cîrstea (Eds.), Algebra and Coalgebra in Computer Science: 4th International Conference, CALCO 2011, Winchester, UK, August 30-September 2, 2011: proceedings (pp. 100-114). (Lecture Notes in Computer Science; Vol. 6859). Springer. https://doi.org/10.1007/978-3-642-22944-2_8[details]
Fontaine, G., Leal, R., & Venema, Y. (2010). Automata for Coalgebras: an approach using predicate liftings. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P. G. Spirakis (Eds.), Automata, Languages and Programming: 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010 : proceedings (Vol. 2, pp. 381-392). (Lecture Notes in Computer Science; Vol. 6199), (Advanced Research in Computing and Software Science). Springer. https://doi.org/10.1007/978-3-642-14162-1_32[details]
Kurz, A., & Venema, Y. (2010). Coalgebraic Lindström Theorems. In L. Beklemishev, V. Goranko, & V. Shehtman (Eds.), Advances in Modal Logic: AiML 8 (pp. 292-309). College Publications. http://www.aiml.net/volumes/volume8/Kurz-Venema.pdf[details]
Santocanale, L., & Venema, Y. (2010). Uniform interpolation for monotone modal logic. In L. Beklemishev, V. Goranko, & V. Shehtman (Eds.), Advances in Modal Logic: AiML 8 (pp. 350-370). College Publications. http://www.aiml.net/volumes/volume8/Santocanale-Venema.pdf[details]
Schröder, L., & Venema, Y. (2010). Flat coalgebraic fixed point logics. In P. Gastin, & F. Laroussinie (Eds.), CONCUR 2010 - Concurrency Theory: 21st international conference, CONCUR 2010, Paris, France, August 31-September 3, 2010 : proceedings (pp. 524-538). (Lecture Notes in Computer Science; Vol. 6269), (Advanced Research in Computing and Software Science). Springer. https://doi.org/10.1007/978-3-642-15375-4_36[details]
2009
Kissig, C., & Venema, Y. (2009). Complementation of coalgebra automata. In A. Kurz, M. Lenisa, & A. Tarlecki (Eds.), Algebra and Coalgebra in Computer Science: Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009 : proceedings (pp. 81-96). (Lecture Notes in Computer Science; Vol. 5728). Springer. https://doi.org/10.1007/978-3-642-03741-2_7[details]
Tulenheimo, T., & Venema, Y. (2008). Propositional logics for three. In C. Dégrémont, L. Keiff, & H. Rückert (Eds.), Dialogues, logics and other strange things: Essays in honour of Shahid Rahman (pp. 399-430). (Tributes; No. 7). College Publications. http://www.geocities.com/tero_tulenheimo/Online/TulVen.pdf[details]
Marx, M. J., & Venema, Y. (2007). Local variations on a loose theme: modal logic and decidability. In E. Grädel, P. Kolaitis, L. Libkin, M. J. Marx, J. Spencer, M. Vardi, Y. Venema, & S. Weinstein (Eds.), Finite Model Theory and its Applications (pp. 371-430). Springer Verlag. [details]
Palmigiano, A., & Venema, Y. (2007). Nabla algebras and Chu spaces. In T. Mossakowski, U. Montanari, & M. Haveraaen (Eds.), Algebra and Coalgebra in Computer Science: Second International Conference, CALCO 2007, Bergen, Norway, August 20-24, 2007 : proceedings (pp. 394-408). (Lecture Notes in Computer Science; Vol. 4624). Springer. https://doi.org/10.1007/978-3-540-73859-6_27[details]
Santocanale, L., & Venema, Y. (2007). Completeness for flat modal fixpoint logics. In N. Dershowitz, & A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning: 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007 : proceedings (pp. 499-513). (Lecture Notes in Computer Science; Vol. 4790), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-540-75560-9_36[details]
Venema, Y. (2007). A modal distributive law. In Logic, Language, Information and Computation - 14th International Workshop, WoLLIC 2007, Proceedings (pp. 351). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 4576 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-540-73445-1_25
2006
Venema, Y. (2006). Algebras and Coalgebras. In J. F. A. K. van Benthem, P. Blackburn, & F. Wolter (Eds.), Handbook of Modal Logic (pp. 331-426). Amsterdam: Elsevier. [details]
ten Cate, B. D., Conradie, W., Marx, M. J., & Venema, Y. (2006). Definitorially Complete Description Logics. In P. Doherty, J. Mylopoulos, & C. Welty (Eds.), Proceedings of KR 2006 (pp. 79-89). AAAI Press. [details]
2014
Carreiro, F., & Venema, Y. (2014). PDL Inside the μ-calculus: A Syntactic and an Automata-theoretic Characterization. In R. Goré, B. Kooi, & A. Kurucz (Eds.), Advances in Modal Logic: AiML 10 (pp. 74-93). College Publications. http://www.aiml.net/volumes/volume10/Carreiro-Venema.pdf[details]
Grädel, E., Kolaitis, P., Libkin, L., Marx, M. J., Spencer, J., Vardi, M., Venema, Y., & Weinstein, S. (2007). Finite model theory and its applications. (Texts in theoretical computer science; No. 13). Springer. [details]
2006
Governatori, G., Hodkinson, I., & Venema, Y. (Eds.) (2006). Advances in Modal Logic 6. (Advances in Modal Logic; No. 6). College Publications. http://www.aiml.net/volumes/volume6/[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.