Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.

Prof. dr. Y. (Yde) Venema

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
ILLC

Bezoekadres
  • Science Park 105
  • Kamernummer: F1.22B
Postadres
  • Postbus 94242
    1090 GE Amsterdam
  • Publicaties

    2024

    2023

    • Dekker, M., Kloibhofer, J., Marti, J., & Venema, Y. (2023). Proof Systems for the Modal μ-Calculus Obtained by Determinizing Automata. In R. Ramanayake, & J. Urban (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods: 32nd International Conference, TABLEAUX 2023, Prague, Czech Republic, September 18–21, 2023 : proceedings (pp. 242-259). (Lecture Notes in Computer Science; Vol. 14278), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-43513-3_14 [details]
    • Rooduijn, J., & Venema, Y. (2023). Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus. In H. H. Hansen, A. Scedrov, & R. J. G. B. de Queiroz (Eds.), Logic, Language, Information, and Computation: 29th International Workshop, WoLLIC 2023, Halifax, NS, Canada, July 11–14, 2023 : proceedings (pp. 318-335). (Lecture Notes in Computer Science; Vol. 13923), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-031-39784-4_20, https://doi.org/10.48550/arXiv.2307.01773 [details]

    2022

    2021

    • Kupke, C., Marti, J., & Venema, Y. (2021). On the size of disjunctive formulas in the µ-calculus. Electronic Proceedings in Theoretical Computer Science, 346, 291-307. https://doi.org/10.4204/EPTCS.346.19 [details]
    • Marti, J., & Venema, Y. (2021). A Focus System for the Alternation-Free μ-Calculus. In A. Das, & S. Negri (Eds.), Automated Reasoning with Analytic Tableaux and Related Methods: 30th International Conference, TABLEAUX 2021, Birmingham, UK, September 6–9, 2021 : proceedings (pp. 371-388). (Lecture Notes in Computer Science; Vol. 12842), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-86059-2_22 [details]
    • Rooduijn, J., & Venema, Y. (2021). Filtration and canonical completeness for continuous modal µ-calculi. Electronic Proceedings in Theoretical Computer Science, 346, 211-226. https://doi.org/10.4204/EPTCS.346.14 [details]

    2020

    2019

    • Bezhanishvili, G., Bezhanishvili, N., Santoli, T., & Venema, Y. (2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170(11), Article 102714. Advance online publication. https://doi.org/10.1016/j.apal.2019.06.003 [details]
    • Bezhanishvili, N., de Groot, J., & Venema, Y. (2019). Coalgebraic Geometric Logic. In M. Roggenbach, & A. Sokolova (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom Article 7 (Leibniz International Proceedings in Informatics; Vol. 139). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2019.7 [details]
    • Ciancia, V., & Venema, Y. (2019). Ω-Automata: A Coalgebraic Perspective on Regular ω-Languages. In M. Roggenbach, & A. Sokolova (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom Article 5 (Leibniz International Proceedings in Informatics; Vol. 139). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2019.5 [details]
    • Enqvist, S., & Venema, Y. (2019). Disjunctive bases: normal forms and model theory for modal logics. Logical Methods in Computer Science, 15(1), Article 30. https://doi.org/10.23638/LMCS-15(1:30)2019 [details]
    • Enqvist, S., Hansen, H. H., Kupke, C., Marti, J., & Venema, Y. (2019). Completeness for game logic. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019): Vancouver, British Columbia, Canada, 24-27 June 2019 (pp. 307-319). IEEE. https://doi.org/10.1109/LICS.2019.8785676 [details]
    • Enqvist, S., Seifan, F., & Venema, Y. (2019). Completeness for μ-calculi: A coalgebraic approach. Annals of Pure and Applied Logic, 170(5), 578-641. Advance online publication. https://doi.org/10.1016/j.apal.2018.12.004 [details]
    • Milanese, G. C., & Venema, Y. (2019). Closure ordinals for the two-way μ-calculus. In R. Iemhoff, M. Moortgat, & R. de Queiroz (Eds.), Logic, Language, Information, and Computation: 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019 : proceedings (pp. 498-515). (Lecture Notes in Computer Science; Vol. 11541), (FoLLI Publications on Logic, Language and Information). Springer. https://doi.org/10.1007/978-3-662-59533-6_30 [details]

    2018

    • Enqvist, S., Seifan, F., & Venema, Y. (2018). Completeness for the modal μ-calculus: Separating the combinatorics from the dynamics. Theoretical Computer Science, 727, 37-100. https://doi.org/10.1016/j.tcs.2018.03.001 [details]
    • Fontaine, G., & Venema, Y. (2018). Some model theory for the modal μ-calculus: Syntactic characterisations of semantic properties. Logical Methods in Computer Science, 14(1), Article 14. https://doi.org/10.23638/LMCS-14(1:14)2018 [details]
    • Hansen, H. H., Kupke, C., Marti, J., & Venema, Y. (2018). Parity Games and Automata for Game Logic. In A. Madeira, & M. Benevides (Eds.), Dynamic Logic. New Trends and Applications: First International Workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017 : proceedings (pp. 115-132). (Lecture Notes in Computer Science; Vol. 10669). Springer. https://doi.org/10.1007/978-3-319-73579-5_8 [details]
    • Schröder, L., & Venema, Y. (2018). Completeness of flat coalgebraic fixpoint logics. ACM Transactions on Computational Logic, 19(1), Article 4. https://doi.org/10.1145/3157055 [details]

    2017

    • Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., & Venema, Y. (2017). Irreducible equivalence relations, Gleason spaces, and de Vries duality. Applied Categorical Structures, 25(3), 381-401. Advance online publication. https://doi.org/10.1007/s10485-016-9434-2 [details]
    • Enqvist, S., & Venema, Y. (2017). Disjunctive Bases: Normal Forms for Modal Logics. In F. Bonchi, & B. König (Eds.), 7th Conference on Algebra and Coalgebra in Computer Science: CALCO 2017, June 14-16, 2017, Ljubljana, Slovenia Article 11 (Leibniz International Proceedings in Informatics; Vol. 72). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2017.11 [details]
    • Enqvist, S., Seifan, F., & Venema, Y. (2017). An expressive completeness theorem for coalgebraic modal µ-calculi. Logical Methods in Computer Science, 13(2), Article 14. https://doi.org/10.23638/LMCS-13(2:14)2017 [details]

    2016

    • Enqvist, S., Seifan, F., & Venema, Y. (2016). Completeness for Coalgebraic Fixpoint Logic. In L. Regnier, & J.-M. Talbot (Eds.), Computer Science Logic : CSL 2016, August 29 to September 1, 2016, Marseille, France Article 7 (Leibniz International Proceedings in Informatics; Vol. 62). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2016.7 [details]

    2015

    • Enqvist, S., Seifan, F., & Venema, Y. (2015). Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras. In Proceedings, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2015: 6-10 July 2015, Kyoto, Japan (pp. 353-365). IEEE Computer Society. https://doi.org/10.1109/LICS.2015.41 [details]
    • Marti, J., & Venema, Y. (2015). Lax Extensions of Coalgebra Functors and Their Logic. Journal of Computer and System Sciences, 81(5), 880-900. Advance online publication. https://doi.org/10.1016/j.jcss.2014.12.006 [details]
    • Marti, J., Seifan, F., & Venema, Y. (2015). Uniform Interpolation for Coalgebraic Fixpoint Logic. In L. S. Moss, & P. Sobociński (Eds.), 6th Conference on Algebra and Coalgebra in Computer Science: CALCO'15, June 24-26, 2015, Nijmegen, Netherlands (pp. 238-252). (Leibniz International Proceedings in Informatics; Vol. 35). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CALCO.2015.238 [details]

    2014

    • Bílková, M., Palmigiano, A., & Venema, Y. (2014). Proof systems for Moss’ coalgebraic logic. Theoretical Computer Science, 549, 36-60. https://doi.org/10.1016/j.tcs.2014.06.018 [details]
    • Carreiro, F., Facchini, A., Venema, Y., & Zanasi, F. (2014). Weak MSO: automata and expressiveness modulo bisimilarity. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS): Vienna, Austria - July 14-18, 2014 Article 27 ACM. https://doi.org/10.1145/2603088.2603101 [details]
    • Venema, Y. (2014). Expressiveness modulo bisimilarity: a coalgebraic perspective. In A. Baltag, & S. Smets (Eds.), Johan van Benthem on Logic and Information Dynamics (pp. 33-65). (Outstanding contributions to logic; Vol. 5). Springer. https://doi.org/10.1007/978-3-319-06025-5_2 [details]
    • Venema, Y., & Vosmaer, J. (2014). Modal Logic and the Vietoris Functor. In G. Bezhanishvili (Ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics (pp. 119-153). (Outstanding contributions to logic; Vol. 4). Springer. https://doi.org/10.1007/978-94-017-8860-1_6 [details]

    2013

    • Facchini, A., Venema, Y., & Zanasi, F. (2013). A characterization theorem for the alternation-free fragment of the modal µ-calculus. In Proceedings, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2013 : 25-28 June 2013, New Orleans, Louisiana (pp. 478-487). IEEE Computer Society. https://doi.org/10.1109/LICS.2013.54 [details]
    • Venema, Y. (2013). Cylindric Modal Logic. In H. Andréka, M. Ferenczi, & I. Németi (Eds.), Cylindric-like Algebras and Algebraic Logic (pp. 249-269). (Bolyai Society Mathematical Studies; Vol. 22). Springer. https://doi.org/10.1007/978-3-642-35025-2_12 [details]
    • Venema, Y., Vickers, S., & Vosmaer, J. (2013). Generalised powerlocales via relation lifting. Mathematical Structures in Computer Science, 23(1), 142-199. Advance online publication. https://doi.org/10.1017/S0960129512000229 [details]

    2012

    • Beklemishev, L., Bezhanishvili, G., Mundici, D., & Venema, Y. (2012). Foreword. Studia Logica, 100(1-2), 1-7. Advance online publication. https://doi.org/10.1007/s11225-012-9394-y [details]
    • Ciancia, V., & Venema, Y. (2012). Stream Automata Are Coalgebras. In D. Pattinson, & L. Schröder (Eds.), Coalgebraic Methods in Computer Science: 11th International Workshop, CMCS 2012, colocated with ETAPS 2012, Tallinn, Estonia, March 31 – April 1, 2012 : revised selected papers (pp. 90-108). (Lecture Notes in Computer Science; Vol. 7399). Springer. https://doi.org/10.1007/978-3-642-32784-1_6 [details]
    • Kupke, C., Kurz, A., & Venema, Y. (2012). Completeness for the coalgebraic cover modality. Logical Methods in Computer Science, 8(3), Article 2. https://doi.org/10.2168/LMCS-8(3:2)2012 [details]
    • Marti, J., & Venema, Y. (2012). Lax Extensions of Coalgebra Functors. In D. Pattinson, & L. Schröder (Eds.), Coalgebraic Methods in Computer Science: 11th International Workshop, CMCS 2012, colocated with ETAPS 2012, Tallinn, Estonia, March 31 – April 1, 2012 : revised selected papers (pp. 150-169). (Lecture Notes in Computer Science; Vol. 7399). Springer. https://doi.org/10.1007/978-3-642-32784-1_9 [details]

    2011

    • Bergfeld, J., & Venema, Y. (2011). Model constructions for Moss' coalgebraic logic. In A. Corradini, B. Klin, & C. Cîrstea (Eds.), Algebra and Coalgebra in Computer Science: 4th International Conference, CALCO 2011, Winchester, UK, August 30-September 2, 2011: proceedings (pp. 100-114). (Lecture Notes in Computer Science; Vol. 6859). Springer. https://doi.org/10.1007/978-3-642-22944-2_8 [details]
    • Bílková, M., Velebil, J., & Venema, Y. (2011). On monotone modalities and adjointness. Mathematical Structures in Computer Science, 21, 383-416. https://doi.org/10.1017/S0960129510000514 [details]
    • Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., & Venema, Y. (2011). Modal logics are coalgebraic. Computer Journal, 54(1), 31-41. Advance online publication. https://doi.org/10.1093/comjnl/bxp004 [details]

    2010

    • Bezhanishvili, N., Fontaine, G., & Venema, Y. (2010). Vietoris bisimulations. Journal of Logic and Computation, 20(5), 1017-1040. https://doi.org/10.1093/logcom/exn091 [details]
    • Fontaine, G., Leal, R., & Venema, Y. (2010). Automata for Coalgebras: an approach using predicate liftings. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P. G. Spirakis (Eds.), Automata, Languages and Programming: 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010 : proceedings (Vol. 2, pp. 381-392). (Lecture Notes in Computer Science; Vol. 6199), (Advanced Research in Computing and Software Science). Springer. https://doi.org/10.1007/978-3-642-14162-1_32 [details]
    • Kurz, A., & Venema, Y. (2010). Coalgebraic Lindström Theorems. In L. Beklemishev, V. Goranko, & V. Shehtman (Eds.), Advances in Modal Logic: AiML 8 (pp. 292-309). College Publications. http://www.aiml.net/volumes/volume8/Kurz-Venema.pdf [details]
    • Olde Loohuis, L., & Venema, Y. (2010). Logics and algebras for multiple players. Review of Symbolic Logic, 3(3), 485-519. https://doi.org/10.1017/S1755020310000079 [details]
    • Santocanale, L., & Venema, Y. (2010). Completeness for flat modal fixpoint logics. Annals of Pure and Applied Logic, 162(1), 55-82. https://doi.org/10.1016/j.apal.2010.07.003 [details]
    • Santocanale, L., & Venema, Y. (2010). Uniform interpolation for monotone modal logic. In L. Beklemishev, V. Goranko, & V. Shehtman (Eds.), Advances in Modal Logic: AiML 8 (pp. 350-370). College Publications. http://www.aiml.net/volumes/volume8/Santocanale-Venema.pdf [details]
    • Schröder, L., & Venema, Y. (2010). Flat coalgebraic fixed point logics. In P. Gastin, & F. Laroussinie (Eds.), CONCUR 2010 - Concurrency Theory: 21st international conference, CONCUR 2010, Paris, France, August 31-September 3, 2010 : proceedings (pp. 524-538). (Lecture Notes in Computer Science; Vol. 6269), (Advanced Research in Computing and Software Science). Springer. https://doi.org/10.1007/978-3-642-15375-4_36 [details]

    2009

    • Kissig, C., & Venema, Y. (2009). Complementation of coalgebra automata. In A. Kurz, M. Lenisa, & A. Tarlecki (Eds.), Algebra and Coalgebra in Computer Science: Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009 : proceedings (pp. 81-96). (Lecture Notes in Computer Science; Vol. 5728). Springer. https://doi.org/10.1007/978-3-642-03741-2_7 [details]

    2008

    2007

    • Marx, M. J., & Venema, Y. (2007). Local variations on a loose theme: modal logic and decidability. In E. Grädel, P. Kolaitis, L. Libkin, M. J. Marx, J. Spencer, M. Vardi, Y. Venema, & S. Weinstein (Eds.), Finite Model Theory and its Applications (pp. 371-430). Springer Verlag. [details]
    • Palmigiano, A., & Venema, Y. (2007). Nabla algebras and Chu spaces. In T. Mossakowski, U. Montanari, & M. Haveraaen (Eds.), Algebra and Coalgebra in Computer Science: Second International Conference, CALCO 2007, Bergen, Norway, August 20-24, 2007 : proceedings (pp. 394-408). (Lecture Notes in Computer Science; Vol. 4624). Springer. https://doi.org/10.1007/978-3-540-73859-6_27 [details]
    • Santocanale, L., & Venema, Y. (2007). Completeness for flat modal fixpoint logics. In N. Dershowitz, & A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning: 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007 : proceedings (pp. 499-513). (Lecture Notes in Computer Science; Vol. 4790), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-540-75560-9_36 [details]
    • Theunissen, M., & Venema, Y. (2007). MacNeille completions of lattice expansions. Algebra Universalis, 57(2), 143-193. https://doi.org/10.1007/s00012-007-2033-1
    • Venema, Y. (2007). A modal distributive law. In Logic, Language, Information and Computation - 14th International Workshop, WoLLIC 2007, Proceedings (pp. 351). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 4576 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-540-73445-1_25

    2006

    • Venema, Y. (2006). Algebras and Coalgebras. In J. F. A. K. van Benthem, P. Blackburn, & F. Wolter (Eds.), Handbook of Modal Logic (pp. 331-426). Amsterdam: Elsevier. [details]
    • Venema, Y. (2006). Automata and Fixed Point Logics: a Coalgebraic Perspective. Information and Computation, 204, 637-678. https://doi.org/10.1016/j.ic.2005.06.003 [details]
    • ten Cate, B. D., Conradie, W., Marx, M. J., & Venema, Y. (2006). Definitorially Complete Description Logics. In P. Doherty, J. Mylopoulos, & C. Welty (Eds.), Proceedings of KR 2006 (pp. 79-89). AAAI Press. [details]

    2014

    2007

    • Grädel, E., Kolaitis, P., Libkin, L., Marx, M. J., Spencer, J., Vardi, M., Venema, Y., & Weinstein, S. (2007). Finite model theory and its applications. (Texts in theoretical computer science; No. 13). Springer. [details]

    2006

    2012

    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Nevenwerkzaamheden
    • Geen nevenwerkzaamheden