For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Prof. dr. Y. (Yde) Venema

Faculty of Science
ILLC

Visiting address
  • Science Park 105
  • Room number: F1.22B
Postal address
  • Postbus 94242
    1090 GE Amsterdam
  • Publications

    2019

    • Bezhanishvili, G., Bezhanishvili, N., Santoli, T., & Venema, Y. (2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170(11), [102714]. https://doi.org/10.1016/j.apal.2019.06.003 [details]
    • Bezhanishvili, N., de Groot, J., & Venema, Y. (2019). Coalgebraic Geometric Logic. In M. Roggenbach, & A. Sokolova (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom [7] (Leibniz International Proceedings in Informatics; Vol. 139). Saarbrücken/Wadern: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CALCO.2019.7 [details]
    • Ciancia, V., & Venema, Y. (2019). Ω-Automata: A Coalgebraic Perspective on Regular ω-Languages. In M. Roggenbach, & A. Sokolova (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom [5] (Leibniz International Proceedings in Informatics; Vol. 139). Saarbrücken/Wadern: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CALCO.2019.5 [details]
    • Enqvist, S., & Venema, Y. (2019). Disjunctive bases: normal forms and model theory for modal logics. Logical Methods in Computer Science, 15(1), [30]. https://doi.org/10.23638/LMCS-15(1:30)2019 [details]
    • Enqvist, S., Hansen, H. H., Kupke, C., Marti, J., & Venema, Y. (2019). Completeness for game logic. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019): Vancouver, British Columbia, Canada, 24-27 June 2019 (pp. 307-319). Piscataway, NJ: IEEE. https://doi.org/10.1109/LICS.2019.8785676 [details]
    • Enqvist, S., Seifan, F., & Venema, Y. (2019). Completeness for μ-calculi: A coalgebraic approach. Annals of Pure and Applied Logic, 170(5), 578-641. https://doi.org/10.1016/j.apal.2018.12.004 [details]
    • Milanese, G. C., & Venema, Y. (2019). Closure ordinals for the two-way μ-calculus. In R. Iemhoff, M. Moortgat, & R. de Queiroz (Eds.), Logic, Language, Information, and Computation: 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019 : proceedings (pp. 498-515). (Lecture Notes in Computer Science; Vol. 11541), (FoLLI Publications on Logic, Language and Information). Berlin: Springer. https://doi.org/10.1007/978-3-662-59533-6_30 [details]

    2018

    • Enqvist, S., Seifan, F., & Venema, Y. (2018). Completeness for the modal μ-calculus: Separating the combinatorics from the dynamics. Theoretical Computer Science, 727, 37-100. https://doi.org/10.1016/j.tcs.2018.03.001 [details]
    • Fontaine, G., & Venema, Y. (2018). Some model theory for the modal μ-calculus: Syntactic characterisations of semantic properties. Logical Methods in Computer Science, 14(1), [14]. https://doi.org/10.23638/LMCS-14(1:14)2018 [details]
    • Hansen, H. H., Kupke, C., Marti, J., & Venema, Y. (2018). Parity Games and Automata for Game Logic. In A. Madeira, & M. Benevides (Eds.), Dynamic Logic. New Trends and Applications: First International Workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017 : proceedings (pp. 115-132). (Lecture Notes in Computer Science; Vol. 10669). Cham: Springer. https://doi.org/10.1007/978-3-319-73579-5_8 [details]
    • Schröder, L., & Venema, Y. (2018). Completeness of flat coalgebraic fixpoint logics. ACM Transactions on Computational Logic, 19(1), [4]. https://doi.org/10.1145/3157055 [details]

    2017

    • Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., & Venema, Y. (2017). Irreducible equivalence relations, Gleason spaces, and de Vries duality. Applied Categorical Structures, 25(3), 381-401. https://doi.org/10.1007/s10485-016-9434-2 [details]
    • Enqvist, S., & Venema, Y. (2017). Disjunctive Bases: Normal Forms for Modal Logics. In F. Bonchi, & B. König (Eds.), 7th Conference on Algebra and Coalgebra in Computer Science: CALCO 2017, June 14-16, 2017, Ljubljana, Slovenia [11] (Leibniz International Proceedings in Informatics; Vol. 72). Saarbrücken/Wadern: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CALCO.2017.11 [details]
    • Enqvist, S., Seifan, F., & Venema, Y. (2017). An expressive completeness theorem for coalgebraic modal µ-calculi. Logical Methods in Computer Science, 13(2), [14]. https://doi.org/10.23638/LMCS-13(2:14)2017 [details]

    2016

    • Enqvist, S., Seifan, F., & Venema, Y. (2016). Completeness for Coalgebraic Fixpoint Logic. In L. Regnier, & J-M. Talbot (Eds.), Computer Science Logic : CSL 2016, August 29 to September 1, 2016, Marseille, France [7] (Leibniz International Proceedings in Informatics; Vol. 62). Saarbrücken/Wadern: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CSL.2016.7 [details]

    2015

    • Enqvist, S., Seifan, F., & Venema, Y. (2015). Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras. In Proceedings, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2015: 6-10 July 2015, Kyoto, Japan (pp. 353-365). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/LICS.2015.41 [details]
    • Marti, J., & Venema, Y. (2015). Lax Extensions of Coalgebra Functors and Their Logic. Journal of Computer and System Sciences, 81(5), 880-900. https://doi.org/10.1016/j.jcss.2014.12.006 [details]
    • Marti, J., Seifan, F., & Venema, Y. (2015). Uniform Interpolation for Coalgebraic Fixpoint Logic. In L. S. Moss, & P. Sobociński (Eds.), 6th Conference on Algebra and Coalgebra in Computer Science: CALCO'15, June 24-26, 2015, Nijmegen, Netherlands (pp. 238-252). (Leibniz International Proceedings in Informatics; Vol. 35). Saarbrücken/Wadern: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CALCO.2015.238 [details]

    2014

    • Bílková, M., Palmigiano, A., & Venema, Y. (2014). Proof systems for Moss’ coalgebraic logic. Theoretical Computer Science, 549, 36-60. https://doi.org/10.1016/j.tcs.2014.06.018 [details]
    • Carreiro, F., Facchini, A., Venema, Y., & Zanasi, F. (2014). Weak MSO: automata and expressiveness modulo bisimilarity. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS): Vienna, Austria - July 14-18, 2014 [27] New York, NY: ACM. https://doi.org/10.1145/2603088.2603101 [details]
    • Venema, Y. (2014). Expressiveness modulo bisimilarity: a coalgebraic perspective. In A. Baltag, & S. Smets (Eds.), Johan van Benthem on Logic and Information Dynamics (pp. 33-65). (Outstanding contributions to logic; Vol. 5). Cham: Springer. https://doi.org/10.1007/978-3-319-06025-5_2 [details]
    • Venema, Y., & Vosmaer, J. (2014). Modal Logic and the Vietoris Functor. In G. Bezhanishvili (Ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics (pp. 119-153). (Outstanding contributions to logic; Vol. 4). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-8860-1_6 [details]

    2013

    • Facchini, A., Venema, Y., & Zanasi, F. (2013). A characterization theorem for the alternation-free fragment of the modal µ-calculus. In Proceedings, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2013 : 25-28 June 2013, New Orleans, Louisiana (pp. 478-487). Los Alamitos, California: IEEE Computer Society. https://doi.org/10.1109/LICS.2013.54 [details]
    • Venema, Y. (2013). Cylindric Modal Logic. In H. Andréka, M. Ferenczi, & I. Németi (Eds.), Cylindric-like Algebras and Algebraic Logic (pp. 249-269). (Bolyai Society Mathematical Studies; Vol. 22). Berlin: Springer. https://doi.org/10.1007/978-3-642-35025-2_12 [details]
    • Venema, Y., Vickers, S., & Vosmaer, J. (2013). Generalised powerlocales via relation lifting. Mathematical Structures in Computer Science, 23(1), 142-199. https://doi.org/10.1017/S0960129512000229 [details]

    2012

    • Beklemishev, L., Bezhanishvili, G., Mundici, D., & Venema, Y. (2012). Foreword. Studia Logica, 100(1-2), 1-7. https://doi.org/10.1007/s11225-012-9394-y [details]
    • Ciancia, V., & Venema, Y. (2012). Stream Automata Are Coalgebras. In D. Pattinson, & L. Schröder (Eds.), Coalgebraic Methods in Computer Science: 11th International Workshop, CMCS 2012, colocated with ETAPS 2012, Tallinn, Estonia, March 31 – April 1, 2012 : revised selected papers (pp. 90-108). (Lecture Notes in Computer Science; Vol. 7399). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-32784-1_6 [details]
    • Kupke, C., Kurz, A., & Venema, Y. (2012). Completeness for the coalgebraic cover modality. Logical Methods in Computer Science, 8(3), [2]. https://doi.org/10.2168/LMCS-8(3:2)2012 [details]
    • Marti, J., & Venema, Y. (2012). Lax Extensions of Coalgebra Functors. In D. Pattinson, & L. Schröder (Eds.), Coalgebraic Methods in Computer Science: 11th International Workshop, CMCS 2012, colocated with ETAPS 2012, Tallinn, Estonia, March 31 – April 1, 2012 : revised selected papers (pp. 150-169). (Lecture Notes in Computer Science; Vol. 7399). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-32784-1_9 [details]

    2011

    • Bergfeld, J., & Venema, Y. (2011). Model constructions for Moss' coalgebraic logic. In A. Corradini, B. Klin, & C. Cîrstea (Eds.), Algebra and Coalgebra in Computer Science: 4th International Conference, CALCO 2011, Winchester, UK, August 30-September 2, 2011: proceedings (pp. 100-114). (Lecture Notes in Computer Science; Vol. 6859). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-22944-2_8 [details]
    • Bílková, M., Velebil, J., & Venema, Y. (2011). On monotone modalities and adjointness. Mathematical Structures in Computer Science, 21, 383-416. https://doi.org/10.1017/S0960129510000514 [details]
    • Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., & Venema, Y. (2011). Modal logics are coalgebraic. Computer Journal, 54(1), 31-41. https://doi.org/10.1093/comjnl/bxp004 [details]

    2010

    • Bezhanishvili, N., Fontaine, G., & Venema, Y. (2010). Vietoris bisimulations. Journal of Logic and Computation, 20(5), 1017-1040. https://doi.org/10.1093/logcom/exn091 [details]
    • Fontaine, G., Leal, R., & Venema, Y. (2010). Automata for Coalgebras: an approach using predicate liftings. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P. G. Spirakis (Eds.), Automata, Languages and Programming: 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010 : proceedings (Vol. 2, pp. 381-392). (Lecture Notes in Computer Science; Vol. 6199), (Advanced Research in Computing and Software Science). Berlin: Springer. https://doi.org/10.1007/978-3-642-14162-1_32 [details]
    • Kurz, A., & Venema, Y. (2010). Coalgebraic Lindström Theorems. In L. Beklemishev, V. Goranko, & V. Shehtman (Eds.), Advances in Modal Logic: AiML 8 (pp. 292-309). College Publications. http://www.aiml.net/volumes/volume8/Kurz-Venema.pdf [details]
    • Olde Loohuis, L., & Venema, Y. (2010). Logics and algebras for multiple players. Review of Symbolic Logic, 3(3), 485-519. https://doi.org/10.1017/S1755020310000079 [details]
    • Santocanale, L., & Venema, Y. (2010). Completeness for flat modal fixpoint logics. Annals of Pure and Applied Logic, 162(1), 55-82. https://doi.org/10.1016/j.apal.2010.07.003 [details]
    • Santocanale, L., & Venema, Y. (2010). Uniform interpolation for monotone modal logic. In L. Beklemishev, V. Goranko, & V. Shehtman (Eds.), Advances in Modal Logic: AiML 8 (pp. 350-370). College Publications. http://www.aiml.net/volumes/volume8/Santocanale-Venema.pdf [details]
    • Schröder, L., & Venema, Y. (2010). Flat coalgebraic fixed point logics. In P. Gastin, & F. Laroussinie (Eds.), CONCUR 2010 - Concurrency Theory: 21st international conference, CONCUR 2010, Paris, France, August 31-September 3, 2010 : proceedings (pp. 524-538). (Lecture Notes in Computer Science; Vol. 6269), (Advanced Research in Computing and Software Science). Berlin: Springer. https://doi.org/10.1007/978-3-642-15375-4_36 [details]

    2009

    • Kissig, C., & Venema, Y. (2009). Complementation of coalgebra automata. In A. Kurz, M. Lenisa, & A. Tarlecki (Eds.), Algebra and Coalgebra in Computer Science: Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009 : proceedings (pp. 81-96). (Lecture Notes in Computer Science; Vol. 5728). Berlin: Springer. https://doi.org/10.1007/978-3-642-03741-2_7 [details]

    2008

    2007

    • Marx, M. J., & Venema, Y. (2007). Local variations on a loose theme: modal logic and decidability. In E. Grädel, P. Kolaitis, L. Libkin, M. J. Marx, J. Spencer, M. Vardi, Y. Venema, ... S. Weinstein (Eds.), Finite Model Theory and its Applications (pp. 371-430). Berlin: Springer Verlag. [details]
    • Palmigiano, A., & Venema, Y. (2007). Nabla algebras and Chu spaces. In T. Mossakowski, U. Montanari, & M. Haveraaen (Eds.), Algebra and Coalgebra in Computer Science: Second International Conference, CALCO 2007, Bergen, Norway, August 20-24, 2007 : proceedings (pp. 394-408). (Lecture Notes in Computer Science; Vol. 4624). Berlin: Springer. https://doi.org/10.1007/978-3-540-73859-6_27 [details]
    • Santocanale, L., & Venema, Y. (2007). Completeness for flat modal fixpoint logics. In N. Dershowitz, & A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning: 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007 : proceedings (pp. 499-513). (Lecture Notes in Computer Science; Vol. 4790), (Lecture Notes in Artificial Intelligence). Berlin: Springer. https://doi.org/10.1007/978-3-540-75560-9_36 [details]

    2006

    • Venema, Y. (2006). Algebras and Coalgebras. In J. F. A. K. van Benthem, P. Blackburn, & F. Wolter (Eds.), Handbook of Modal Logic (pp. 331-426). Amsterdam: Elsevier. [details]
    • Venema, Y. (2006). Automata and Fixed Point Logics: a Coalgebraic Perspective. Information and Computation, 204, 637-678. https://doi.org/10.1016/j.ic.2005.06.003 [details]
    • ten Cate, B. D., Conradie, W., Marx, M. J., & Venema, Y. (2006). Definitorially Complete Description Logics. In P. Doherty, J. Mylopoulos, & C. Welty (Eds.), Proceedings of KR 2006 (pp. 79-89). AAAI Press. [details]

    2014

    2007

    • Grädel, E., Kolaitis, P., Libkin, L., Marx, M. J., Spencer, J., Vardi, M., ... Weinstein, S. (2007). Finite model theory and its applications. (Texts in theoretical computer science; No. 13). Berlijn: Springer. [details]

    2006

    2012

    • Venema, Y. (2012). Algebra en coalgebra: bespiegelingen in de logica. Amsterdam: Universiteit van Amsterdam. [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • No ancillary activities