For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. ir. L. (Leo) Dorst

Faculty of Science
Informatics Institute

Visiting address
  • Science Park 904
  • Room number: C3.255
Postal address
  • Postbus 94323
    1090 GH Amsterdam
Contact details
  • Publications

    2020

    2019

    2018

    • ElNaghy, H., & Dorst, L. (2018). Using Mathematical Morphology to Simplify Archaeological Fracture Surfaces. In T. Ju, & A. Vaxman (Eds.), Geometry Processing 2018 - Symposium Proceedings - Posters: Paris, France, July 7-11, 2018 (pp. 3-4). (Eurographics Symposium on Geometry Processing; Vol. SGP18). The Eurographics Association. https://doi.org/10.2312/sgp.20181179 [details]

    2017

    • ElNaghy, H., & Dorst, L. (2017). Geometry Based Faceting of 3D Digitized Archaeological Fragments. In 2017 IEEE International Conference on Computer Vision Workshops : ICCVW 2017: 22-29 October 2017, Venice, Italy : proceedings (pp. 2934-2942). Los Alamitos, CA: IEEE. https://doi.org/10.1109/ICCVW.2017.346 [details]

    2016

    2014

    2012

    • Dubbelman, G., Dorst, L., & Pijls, H. (2012). Manifold statistics for essential matrices. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Computer Vision – ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012 : proceedings (Vol. 2, pp. 531-544). (Lecture Notes in Computer Science; Vol. 7573). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-33709-3_38 [details]

    2011

    • Dorst, L. (2011). Tutorial appendix: structure preserving representation of euclidean motions through conformal geometric algebra. In L. Dorst, & J. Lasenby (Eds.), Guide to Geometric Algebra in Practice (pp. 435-452). Springer. https://doi.org/10.1007/978-0-85729-811-9_21 [details]
    • Dorst, L., & Valkenburg, R. J. (2011). Square root and logarithm of rotors in 3D conformal geometric algebra using polar decomposition. In L. Dorst, & J. Lasenby (Eds.), Guide to Geometric Algebra in Practice (pp. 25-46). Springer. https://doi.org/10.1007/978-0-85729-811-9_5 [details]
    • Fontijne, D., & Dorst, L. (2011). Reconstructing rotations and rigid body motions from exact point correspondences through reflections. In L. Dorst, & J. Lasenby (Eds.), Guide to Geometric Algebra in Practice (pp. 63-78). Springer. https://doi.org/10.1007/978-0-85729-811-9_4 [details]
    • Valkenburg, R., & Dorst, L. (2011). Estimating motors from a variety of geometric data in 3D conformal geometric algebra. In L. Dorst, & J. Lasenby (Eds.), Guide to Geometric Algebra in Practice (pp. 81-104). Springer. https://doi.org/10.1007/978-0-85729-811-9_2 [details]

    2010

    • Dorst, L. (2010). Tutorial: Structure-preserving representation of Euclidean motions through conformal geometric algebra. In E. Bayro-Corrochano, & G. Scheuermann (Eds.), Geometric algebra computing in engineering and computer science (pp. 35-52). London: Springer. https://doi.org/10.1007/978-1-84996-108-0_2 [details]
    • Esteban, I., Dorst, L., & Dijk, J. (2010). Closed form solution for the scale ambiguity problem in monocular visual odometry. In H. Liu, H. Ding, Z. Xiong, & X. Zhu (Eds.), Intelligent Robotics and Applications: Third International Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010 : proceedings (Vol. 1, pp. 665-679). (Lecture Notes in Computer Science; Vol. 6424), (Lecture Notes in Artificial Intelligence). Berlin: Springer. https://doi.org/10.1007/978-3-642-16584-9_64 [details]
    • Fontijne, D., & Dorst, L. (2010). Efficient algorithms for factorization and join of blades. In E. Bayro-Corrochano, & G. Scheuermann (Eds.), Geometric algebra computing : in engineering and computer science (pp. 457-476). London: Springer. https://doi.org/10.1007/978-1-84996-108-0_21 [details]

    2009

    • Cibura, C., & Dorst, L. (2009). From exact correspondence data to conformal transformations in closed form using Vahlen matrices. In V. Skala, & D. Hildenbrand (Eds.), GraVisMa 2009 workshop proceedings (pp. 58-65). Plzen, Czech Republic: Union Agency. [details]
    • Dorst, L. (2009). Conformal geometric algebra by extended Vahlen matrices. In V. Skala, & D. Hildenbrand (Eds.), GraVisMa 2009 workshop proceedings (pp. 72-79). Plzen, Czech Republic: Union Agency. [details]
    • Dorst, L. (2009). Determining a versor in n-D geometric algebra from the known transformation of n vectors. In V. Skala, & D. Hildenbrand (Eds.), GraVisMa 2009 workshop proceedings (pp. 66-71). Plzen, Czech Republic: Union Agency. [details]

    2008

    • Ohnishi, N., Kameda, Y., Imiya, A., Dorst, L., & Klette, R. (2008). Dynamic multiresolution optical flow computation. In G. Sommer, & R. Klette (Eds.), Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008 : proceedings (pp. 1-15). (Lecture Notes in Computer Science; Vol. 4931). Berlin: Springer. https://doi.org/10.1007/978-3-540-78157-8_1 [details]

    2012

    2011

    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • No ancillary activities