For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Yanulevskaya, V., Uijlings, J., Geusebroek, J-M., Sebe, N., & Smeulders, A. (2013). A Proto-Object-Based Computational Model for Visual Saliency. Journal of Vision, 13(13), [27]. https://doi.org/10.1167/13.13.27[details]
Alnajar, F., Shan, C., Gevers, T., & Geusebroek, J. M. (2012). Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions. Image and Vision Computing, 30(12), 946-953. https://doi.org/10.1016/j.imavis.2012.07.009[details]
Balke, P., Geusebroek, J. M., & Markus, P. (2012). Brain2: machine learning to measure banknote fitness. In Optical Document Security III: 2012: conference proceedings [cd-rom] Sunbury-on-Thames: Reconnaissance international. [details]
2011
Geusebroek, J. M., Markus, P., & Balke, P. (2011). Learning banknote fitness for sorting. In Proceedings of the 2011 International Conference on Pattern Analysis and Intelligent Robotics: 28-29 June 2011, Putrajaya, Malaysia. - Vol. 1 (pp. 41-46). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICPAIR.2011.5976909[details]
Yanulevskaya, V., Marsman, J. B., Cornelissen, F., & Geusebroek, J. M. (2011). An image statistics-based model for fixation prediction. Cognitive computation, 3(1), 94-104. https://doi.org/10.1007/s12559-010-9087-7[details]
Nedović, V., Smeulders, A. W. M., Redert, A., & Geusebroek, J. M. (2010). Stages As Models of Scene Geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1673-1687. https://doi.org/10.1109/TPAMI.2009.174[details]
van Gemert, J. C., Snoek, C. G. M., Veenman, C. J., Smeulders, A. W. M., & Geusebroek, J. M. (2010). Comparing Compact Codebooks for Visual Categorization. Computer Vision and Image Understanding, 114(4), 450-462. https://doi.org/10.1016/j.cviu.2009.08.004[details]
van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M., & Geusebroek, J. M. (2010). Visual Word Ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1271-1283. https://doi.org/10.1109/TPAMI.2009.132[details]
Burghouts, G. J., & Geusebroek, J. M. (2009). Performance evaluation of local colour invariants. Computer Vision and Image Understanding, 113(1), 48-62. https://doi.org/10.1016/j.cviu.2008.07.003[details]
Lu, R., Gijsenij, A., Gevers, T., Nedović, V., Xu, D., & Geusebroek, J. M. (2009). Color constancy using 3D scene geometry. In 12th International Conference on Computer Vision (ICCV 2009) (pp. 1749-1756). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICCV.2009.5459391[details]
Lu, R., Gijsenij, A., Gevers, T., van de Sande, K., Geusebroek, J. M., & Xu, D. (2009). Color constancy using stage classification. In 2009 IEEE International Conference on Image Processing, ICIP 2009: Proceedings: November 7-12, 2009, Cairo, Egypt (pp. 685-688). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICIP.2009.5414083[details]
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., Uijlings, J. R. R., van Liempt, M., ... Koelma, D. C. (2009). The MediaMill TRECVID 2009 semantic video search engine. In TRECVID 2009 Overview Papers and Slides Gaithersburg, MD: National Institute of Standards and Technology (NIST). [details]
Yanulevskaya, V., & Geusebroek, J. M. (2009). Significance of the Weibull distribution and its sub-models in natural image statistics. In A. Ranchordas, & H. Araújo (Eds.), VISAPP 2009: proceedings of the Fourth International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, February 5-8, 2009 (Vol. 1, pp. 355-362). INSTICC Press. https://doi.org/10.5220/0001793203550362[details]
van Gemert, J. C., Veenman, C. J., & Geusebroek, J. M. (2009). Episode-constrained cross-validation in video concept retrieval. IEEE Transactions on Multimedia, 11(4), 780-785. https://doi.org/10.1109/TMM.2009.2017619[details]
2008
Nedović, V., Smeulders, A. W. M., Redert, A., & Geusebroek, J. M. (2008). Depth estimation via stage classification. In 3DTV Conference: The True Vision: Capture, Transmission and Display of 3D Video: 2008 (pp. 77-80). IEEE. https://doi.org/10.1109/3DTV.2008.4547812[details]
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., van Gemert, J. C., Uijlings, J. R. R., He, J., Li, X., Everts, I., Nedovic, V., van Liempt, M., van Balen, R., Yan, F., Tahir, M. A., Mikolajczyk, K., Kittler, J., de Rijke, M., Geusebroek, J. M., Gevers, T., ... Koelma, D. C. (2008). The MediaMill TRECVID 2008 semantic video search engine. In TRECVID 2008: Proceedings of the 2008 TREC Video Retrieval Evaluation workshop (pp. 1-14). National Institute of Standards and Technology (NIST). http://www-nlpir.nist.gov/projects/tvpubs/tv8.papers/mediamill.pdf[details]
Yanulevskaya, V., van Gemert, J. C., Roth, K., Herbold, A. K., Sebe, N., & Geusebroek, J. M. (2008). Emotional valence categorization using holistic image features. In 15th IEEE International Conference on Image Processing: ICIP 2008 (pp. 101-104). IEEE. https://doi.org/10.1109/ICIP.2008.4711701[details]
van Gemert, J. C., Geusebroek, J-M., Veenman, C. J., & Smeulders, A. W. M. (2008). Kernel codebooks for scene categorization. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Computer Vision – ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008 : proceedings (Vol. III, pp. 696-709). (Lecture Notes in Computer Science; Vol. 5304). Berlin: Springer. https://doi.org/10.1007/978-3-540-88690-7_52[details]
Gevers, T., Gijsenij, A., van de Weijer, J., & Geusebroek, J. M. (2012). Color in computer vision: fundamentals and applications. (Wiley-IS&T series in imaging science and technology). Hoboken, NJ: Wiley-Blackwell. https://doi.org/10.1002/9781118350089[details]
2009
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Huurnink, B., Uijlings, J. R. R., van Liempt, M., ... Koelma, D. C. (2009). The MediaMill TRECVID 2009 semantic video search engine. In TRECVID 2009 working notes Gaithersburg, MD, USA: National Institute of Standards and Technology (NIST). [details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.