For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Goyal, A., van der Laan, M., Troglia, A., Lin, M., Agarwal, H., van de Groep, J., Bliem, R., Paulusse, J. M. J., Schall, P., & Dohnalova, K. (2022). Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications. ACS Omega, 7(28), 24881-24887. https://doi.org/10.1021/acsomega.2c03396[details]
Jonas, H. J., Schall, P., & Bolhuis, P. G. (2022). Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement. Journal of Chemical Physics, 157(9), [094903]. https://doi.org/10.1063/5.0098882
2021
Donaldson, J. G., Schall, P., & Rossi, L. (2021). Magnetic Coupling in Colloidal Clusters for Hierarchical Self-Assembly. ACS Nano, 15(3), 4989-4999. https://doi.org/10.1021/acsnano.0c09952[details]
Jonas, H. J., Stuij, S. G., Schall, P., & Bolhuis, P. G. (2021). A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment. Journal of Chemical Physics, 155(3), [034902]. https://doi.org/10.1063/5.0055012[details]
Marino, E., Vasilyev, O. A., Kluft, B. B., Stroink, M. J. B., Kondrat, S., & Schall, P. (2021). Controlled deposition of nanoparticles with critical Casimir forces. Nanoscale Horizons, 6(9), 751-758. https://doi.org/10.1039/d0nh00670j[details]
Rouwhorst, J., van Baalen, C., Velikov, K., Habibi, M., van der Linden, E., & Schall, P. (2021). Protein microparticles visualize the contact network and rigidity onset in the gelation of model proteins. npj Science of Food, 5, [32]. https://doi.org/10.1038/s41538-021-00111-5[details]
Stuij, S. G., Jonas, H. J., Gong, Z., Sacanna, S., Kodger, T. E., Bolhuis, P. G., & Schall, P. (2021). Revealing viscoelastic bending relaxation dynamics of isolated semiflexible colloidal polymers. Soft Matter, 17(36), 8291-8299. https://doi.org/10.1039/d1sm00556a[details]
Swinkels, P. J. M., Stuij, S. G., Gong, Z., Jonas, H., Ruffino, N., van der Linden, B., Bolhuis, P. G., Sacanna, S., Woutersen, S., & Schall, P. (2021). Revealing pseudorotation and ring-opening reactions in colloidal organic molecules. Nature Communications, 12, [2810]. https://doi.org/10.1038/s41467-021-23144-6[details]
Tang, Y., Gomez, L., van der Laan, M., Timmerman, D., Sebastian, V., Huang, C-C., Gregorkiewicz, T., & Schall, P. (2021). Room temperature synthesis and characterization of novel lead-free double perovskite nanocrystals with a stable and broadband emission. Journal of Materials Chemistry C, 9(1), 158-163. https://doi.org/10.1039/d0tc04394j[details]
Van Der Laan, M., De Weerd, C., Poirier, L., Van De Water, O., Poonia, D., Gomez, L., Kinge, S., Siebbeles, L. D. A., Koenderink, A. F., Gregorkiewicz, T., & Schall, P. (2021). Photon Recycling in CsPbBr3 All-Inorganic Perovskite Nanocrystals. ACS Photonics, 8(11), 3201-3208. https://doi.org/10.1021/acsphotonics.1c00953[details]
Vasilyev, O. A., Marino, E., Kluft, B. B., Schall, P., & Kondrat, S. (2021). Debye vs. Casimir: Controlling the structure of charged nanoparticles deposited on a substrate. Nanoscale, 13(13), 6475-6488. https://doi.org/10.1039/d0nr09076j[details]
de Cagny, H., Rouwhorst, J. C., Arnaudov, L., Stoyanov, S., Blijdenstein, T. B. J., & Schall, P. (2021). Water migration through fat-based semi solid heterogeneous materials. Food Structure, 29, [100208]. https://doi.org/10.1016/j.foostr.2021.100208[details]
Goyal, A., Demmenie, M., Huang, C-C., Schall, P., & Dohnalova, K. (2020). Photophysical properties of ball milled silicon nanostructures. Faraday Discussions, 222, 96-107. https://doi.org/10.1039/C9FD00105K[details]
Kumar, P., Korkolis, E., Benzi, R., Denisov, D., Niemeijer, A., Schall, P., Toschi, F., & Trampert, J. (2020). On interevent time distributions of avalanche dynamics. Scientific Reports, 10(1), [626]. https://doi.org/10.1038/s41598-019-56764-6[details]
Kushwaha, V. S., Acar, S., Miedema, D. M., Denisov, D. V., Schall, P., & Peterman, E. J. G. (2020). The crowding dynamics of the motor protein kinesin-II. PLoS ONE, 15(2), [e0228930]. https://doi.org/10.1371/journal.pone.0228930[details]
Maiti, S., van der Laan, M., Poonia, D., Schall, P., Kinge, S., & Siebbeles, L. D. A. (2020). Emergence of New Materials for Exploiting Highly Efficient Carrier Multiplication in Photovoltaics. Chemical Physics Reviews, 1(1), [011302]. https://doi.org/10.1063/5.0025748[details]
Marino, E., Keller, A. W., An, D., Van Dongen, S., Kodger, T. E., MacArthur, K. E., Heggen, M., Kagan, C. R., Murray, C. B., & Schall, P. (2020). Favoring the Growth of High-Quality, Three-Dimensional Supercrystals of Nanocrystals. Journal of Physical Chemistry C, 124(20), 11256-11264. https://doi.org/10.1021/acs.jpcc.0c02805[details]
Marino, E., Sciortino, A., Berkhout, A., MacArthur, K. E., Heggen, M., Gregorkiewicz, T., Kodger, T. E., Capretti, A., Murray, C. B., Koenderink, A. F., Messina, F., & Schall, P. (2020). Simultaneous photonic and excitonic coupling in spherical quantum dot supercrystals. ACS Nano, 14(10), 13806-13815. https://doi.org/10.1021/acsnano.0c06188[details]
Tang, Y., Lesage, A., & Schall, P. (2020). CsPbI3nanocrystal films: Towards higher stability and efficiency. Journal of Materials Chemistry C, 8(48), 17139-17156. https://doi.org/10.1039/d0tc04475j[details]
van der Gon, D. D., Timmerman, D., Matsude, Y., Ichikawa, S., Ashida, M., Schall, P., & Fujiwara, Y. (2020). Size dependence of quantum efficiency of red emission from GaN:Eu structures for application in micro-LEDs. Optics Letters, 45(14), 3973-3976. https://doi.org/10.1364/OL.397848[details]
2019
Long, A. A., Denisov, D. V., Schall, P., Hufnagel, T. C., Gu, X., Wright, W. J., & Dahmen, K. A. (2019). From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses. Granular Matter, 21(4), [99]. https://doi.org/10.1007/s10035-019-0946-y[details]
Marino, E., Balazs, D. M., Crisp, R. W., Hermida-Merino, D., Loi, M. A., Kodger, T. E., & Schall, P. (2019). Controlling Superstructure-Property Relationships via Critical Casimir Assembly of Quantum Dots. Journal of Physical Chemistry C, 123(22), 13451-13457. https://doi.org/10.1021/acs.jpcc.9b02033[details]
Van Loenen, S. Z., Kodger, T. E., Padston, E. A., Nawar, S., Schall, P., & Spaepen, F. (2019). Measurement of the stiffness of hard-sphere colloidal crystal-liquid interfaces. Physical Review Materials, 3(8), [085605]. https://doi.org/10.1103/PhysRevMaterials.3.085605[details]
Dang, M. T., Zargar, R., Bonn, D., Zaccone, A., & Schall, P. (2018). Nonequilibrium free energy of colloidal glasses under shear. Journal of Physics D: Applied Physics, 51(32), [324002]. https://doi.org/10.1088/1361-6463/aad03a[details]
Hassani, M., Zirdehi, E. M., Kok, K., Schall, P., Fuchs, M., & Varnik, F. (2018). Long-range strain correlations in 3D quiescent glass forming liquids. EPL, 124(1), [18003]. https://doi.org/10.1209/0295-5075/124/18003[details]
Marino, E., Kodger, T. E., Wegdam, G. H., & Schall, P. (2018). Revealing Driving Forces in Quantum Dot Supercrystal Assembly. Advanced materials, 30(43), [1803433]. https://doi.org/10.1002/adma.201803433[details]
Nguyen, V. D., Schoemaker, F. C., Blokhuis, E. M., & Schall, P. (2018). Measurement of the Curvature-Dependent Surface Tension in Nucleating Colloidal Liquids. Physical Review Letters, 121(24), [246102]. https://doi.org/10.1103/PhysRevLett.121.246102[details]
Potenza, M. A. C., Veen, S. J., Schall, P., & Wegdam, G. H. (2018). Nucleation of weakly attractive aggregates in microgravity. Europhysics Letters, 124(2), [28002]. https://doi.org/10.1209/0295-5075/124/28002[details]
2017
Bruhn, B., Brenny, B. J. M., Dekker, S., Doğan, I., Schall, P., & Dohnalová, K. (2017). Multi-chromatic silicon nanocrystals. Light: Science & Applications, 6, [e17007]. https://doi.org/10.1038/lsa.2017.7[details]
Denisov, D. V., Lörincz, K. A., Wright, W. J., Hufnagel, T. C., Nawano, A., Gu, X., ... Schall, P. (2017). Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects. Scientific Reports, 7, [43376]. https://doi.org/10.1038/srep43376[details]
Ghosh, A., Budrikis, Z., Chikkadi, V., Sellerio, A. L., Zapperi, S., & Schall, P. (2017). Direct Observation of Percolation in the Yielding Transition of Colloidal Glasses. Physical Review Letters, 118(14), [148001]. https://doi.org/10.1103/PhysRevLett.118.148001[details]
Miedema, D. M., Kushwaha, V. S., Denisov, D. V., Acar, S., Nienhuis, B., Peterman, E. J. G., & Schall, P. (2017). Correlation imaging reveals specific crowding dynamics of kinesin motor proteins. Physical Review X, 7(4), [041037]. https://doi.org/10.1103/PhysRevX.7.041037[details]
Newton, A. C., Nguyen, T. A., Veen, S. J., Kraft, D. J., Schall, P., & Bolhuis, P. G. (2017). Modelling critical Casimir force induced self-assembly experiments on patchy colloidal dumbbells. Soft Matter, 13(28), 4903-4915. https://doi.org/10.1039/c7sm00668c[details]
Nguyen, T. A., Newton, A., Kraft, D. J., Bolhuis, P. G., & Schall, P. (2017). Tuning patchy bonds induced by critical Casimir forces. Materials, 10(11), [1265]. https://doi.org/10.3390/ma10111265[details]
Nguyen, T. A., Newton, A., Veen, S. J., Kraft, D. J., Bolhuis, P. G., & Schall, P. (2017). Switching Colloidal Superstructures by Critical Casimir Forces. Advanced materials, 29(34), [1700819]. https://doi.org/10.1002/adma.201700819[details]
Sprakel, J., Zaccone, A., Spaepen, F., Schall, P., & Weitz, D. A. (2017). Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. Physical Review Letters, 118(8), [088003]. https://doi.org/10.1103/PhysRevLett.118.088003[details]
Stuij, S. G., Labbé-Laurent, M., Kodger, T. E., Maciołek, A., & Schall, P. (2017). Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter, 13(31), 5233-5249. https://doi.org/10.1039/c7sm00599g[details]
van Dam, B., Nie, H., Ju, B., Marino, E., Paulusse, J. M. J., Schall, P., ... Dohnalová, K. (2017). Excitation-Dependent Photoluminescence from Single-Carbon Dots. Small, 13(48), [1702098]. https://doi.org/10.1002/smll.201702098[details]
2016
Bruhn, B., Limpens, R., Chung, N. X., Schall, P., & Gregorkiewicz, T. (2016). Spectroscopy of carrier multiplication in nanocrystals. Scientific Reports, 6, [20538]. https://doi.org/10.1038/srep20538[details]
Dang, M. T., Denisov, D., Struth, B., Zaccone, A., & Schall, P. (2016). Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear. European Physical Journal E, 39(4), [44]. https://doi.org/10.1140/epje/i2016-16044-3[details]
Denisov, D. V., Lörincz, K. A., Uhl, J. T., Dahmen, K. A., & Schall, P. (2016). Universality of slip avalanches in flowing granular matter. Nature Communications, 7, [10641]. https://doi.org/10.1038/ncomms10641[details]
Lin, N. Y. C., Bierbaum, M., Schall, P., Sethna, J. P., & Cohen, I. (2016). Measuring nonlinear stresses generated by defects in 3D colloidal crystals. Nature Materials, 15(11), 1172-1176. https://doi.org/10.1038/nmat4715[details]
Marino, E., Kodger, T. E., Hove, J. B. T., Velders, A. H., & Schall, P. (2016). Assembling quantum dots via critical Casimir forces. Solar Energy Materials and Solar Cells, 158(2), 154-159. https://doi.org/10.1016/j.solmat.2016.01.016[details]
Nguyen, V. D., Dang, M. T., Nguyen, T. A., & Schall, P. (2016). Critical Casimir forces for colloidal assembly. Journal of Physics-Condensed Matter, 28(4), [043001]. https://doi.org/10.1088/0953-8984/28/4/043001[details]
Sciortino, A., Marino, E., Van Dam, B., Schall, P., Cannas, M., & Messina, F. (2016). Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. The Journal of Physical Chemistry Letters, 7(17), 3419-3423. https://doi.org/10.1021/acs.jpclett.6b01590[details]
Westermeier, F., Pennicard, D., Hirsemann, H., Wagner, U. H., Rau, C., Graafsma, H., ... Struth, B. (2016). Connecting structure, dynamics and viscosity in sheared soft colloidal liquids: a medley of anisotropic fluctuations. Soft Matter, 12(1), 171-180. https://doi.org/10.1039/c5sm01707f[details]
2015
Amann, C. P., Denisov, D., Dang, M. T., Struth, B., Schall, P., & Fuchs, M. (2015). Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory. Journal of Chemical Physics, 143(3), [034505]. https://doi.org/10.1063/1.4926932[details]
Chikkadi, V., Woldhuis, E., van Hecke, M., & Schall, P. (2015). Correlations of strain and plasticity in a flowing foam. Europhysics Letters, 112(3), [36004]. https://doi.org/10.1209/0295-5075/112/36004[details]
Denisov, D. V., Dang, M. T., Struth, B., Zaccone, A., Wegdam, G. H., & Schall, P. (2015). Sharp symmetry-change marks the mechanical failure transition of glasses. Scientific Reports, 5, [14359]. https://doi.org/10.1038/srep14359[details]
Denisov, D. V., Miedema, D. M., Nienhuis, B., & Schall, P. (2015). Totally asymmetric simple exclusion process simulations of molecular motor transport on random networks with asymmetric exit rates. Physical Review E, 92(5), [052714]. https://doi.org/10.1103/PhysRevE.92.052714[details]
Uhl, J. T., Pathak, S., Schorlemmer, D., Liu, X., Swindeman, R., Brinkman, B. A. W., ... Dahmen, K. A. (2015). Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes. Scientific Reports, 5, [16493]. https://doi.org/10.1038/srep16493[details]
Woldhuis, E., Chikkadi, V., van Deen, M. S., Schall, P., & van Hecke, M. (2015). Fluctuations in flows near jamming. Soft Matter, 11(35), 7024-7031. https://doi.org/10.1039/c5sm01592h[details]
Chikkadi, V., Miedema, D. M., Dang, M. T., Nienhuis, B., & Schall, P. (2014). Shear banding of colloidal glasses: Observation of a dynamic first order transition. Physical Review Letters, 113(20), 208301. https://doi.org/10.1103/PhysRevLett.113.208301[details]
Miedema, D. M., de Wijn, A. S., & Schall, P. (2014). Criterion for condensation in kinetically constrained one-dimensional transport models. Physical Review E, 89(6), 062812. https://doi.org/10.1103/PhysRevE.89.062812[details]
Potenza, M. A. C., Manca, A., Veen, S. J., Weber, B., Mazzoni, S., Schall, P., & Wegdam, G. H. (2014). Dynamics of colloidal aggregation in microgravity by critical Casimir forces. Europhysics Letters, 106(6), 68005. https://doi.org/10.1209/0295-5075/106/68005[details]
Rahmani, Y., Koopman, R., Denisov, D., & Schall, P. (2014). Visualizing the strain evolution during the indentation of colloidal glasses. Physical Review E, 89(1), 012304. https://doi.org/10.1103/PhysRevE.89.012304[details]
Varnik, F., Mandal, S., Chikkadi, V., Denisov, D., Olsson, P., Vågberg, D., ... Schall, P. (2014). Correlations of plasticity in sheared glasses. Physical Review E, 89(4), 040301(R). https://doi.org/10.1103/PhysRevE.89.040301[details]
Zaccone, A., Schall, P., & Terentjev, E. M. (2014). Microscopic origin of nonlinear non-affine deformation in metallic glasses. Physical Review B, 90(14), [140203(R)]. https://doi.org/10.1103/PhysRevB.90.140203[details]
Dang, M. T., Vila Verde, A. C., Nguyen, V. D., Bolhuis, P. G., & Schall, P. (2013). Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. Journal of Chemical Physics, 139(9), 094903. https://doi.org/10.1063/1.4819896[details]
Denisov, D., Dang, M. T., Struth, B., Wegdam, G., & Schall, P. (2013). Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology. Scientific Reports, 3, [1631]. https://doi.org/10.1038/srep01631[details]
Mazzoni, S., Potenza, M. A. C., Alaimo, M. D., Veen, S. J., Dielissen, M., Leussink, E., ... Schall, P. (2013). SODI-COLLOID: a combination of static and dynamic light scattering on board the International Space Station. Review of Scientific Instruments, 84, 043704. https://doi.org/10.1063/1.4801852[details]
Shelke, P. B., Nguyen, V. D., Limaye, A. V., & Schall, P. (2013). Controlling Colloidal Morphologies by Critical Casimir Forces. Advanced materials, 25(10), 1499-1503. https://doi.org/10.1002/adma.201204458[details]
Zargar, R., Nienhuis, B., Schall, P., & Bonn, D. (2013). Direct Measurement of the Free Energy of Aging Hard Sphere Colloidal Glasses. Physical Review Letters, 110(25), 258301. https://doi.org/10.1103/PhysRevLett.110.258301[details]
van der Vaart, K., Depypere, F., De Graef, V., Schall, P., Fall, A., Bonn, D., & Dewettinck, K. (2013). Dark chocolate’s compositional effects revealed by oscillatory rheology. European Food research and Technology, 236(6), 931-942. https://doi.org/10.1007/s00217-013-1949-2[details]
van der Vaart, K., Rahmani, Y., Zargar, R., Bonn, D., & Schall, P. (2013). Rheology of concentrated soft and hard-sphere suspensions. Journal of Rheology, 57(4), 1195-1209. https://doi.org/10.1122/1.4808054[details]
Rahmani, Y., van der Vaart, K., van Dam, B., Hu, Z., Chikkadi, V., & Schall, P. (2012). Dynamic heterogeneity in hard and soft sphere colloidal glasses. Soft Matter, 8, 4264-4270. https://doi.org/10.1039/c2sm25267h[details]
Veen, S. J., Antoniuk, O., Weber, B., Potenza, M. A. C., Mazzoni, S., Schall, P., & Wegdam, G. H. (2012). Colloidal aggregation in microgravity by critical Casimir forces. Physical Review Letters, 109(24), [248302]. https://doi.org/10.1103/PhysRevLett.109.248302[details]
de Wijn, A. S., Miedema, D. M., Nienhuis, B., & Schall, P. (2012). Criticality in dynamic arrest: correspondence between glasses and traffic. Physical Review Letters, 109, 228001. https://doi.org/10.1103/PhysRevLett.109.228001[details]
2011
Chikkadi, V., Wegdam, G. H., Bonn, D., Nienhuis, B., & Schall, P. (2011). Long-range strain correlations in sheared colloidal glasses. Physical Review Letters, 107(19). https://doi.org/10.1103/PhysRevLett.107.198303[details]
Ghosh, A., Chikkadi, V., Schall, P., & Bonn, D. (2011). Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass. Physical Review Letters, 107(18). https://doi.org/10.1103/PhysRevLett.107.188303[details]
Ghosh, A., Mari, R., Chikkadi, V., Schall, P., Maggs, A. C., & Bonn, D. (2011). Low-energy modes and Debye behavior in a colloidal crystal. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 390(18-19), 3061-3068. https://doi.org/10.1016/j.physa.2011.02.051[details]
Nguyen, D., Triet, D., Weber, B., Hu, Z., & Schall, P. (2011). Visualizing the structural solid-liquid transition at colloidal crystal-fluid interfaces. Advanced materials, 23, 2716-2720. https://doi.org/10.1002/adma.201004599[details]
Nguyen, V. D., Hu, Z., & Schall, P. (2011). Single crystal growth and anisotropic crystal-fluid interface tension in soft colloidal systems. Physical Review E, 84. https://doi.org/10.1103/PhysRevE.84.011607[details]
Ghosh, A., Mari, R., Chikkadi, V., Schall, P., Kurchan, J., & Bonn, D. (2010). Density of states of colloidal glasses and supercooled liquids. Soft Matter, 6(13), 3082-3090. https://doi.org/10.1039/c0sm00265h[details]
Lőrincz, K. A., & Schall, P. (2010). Visualization of displacement fields in a sheared granular system. Soft Matter, 6(13), 3044-3049. https://doi.org/10.1039/b926817k[details]
Bonn, D., Otwinowski, J., Sacanna, S., Guo, H., Wegdam, G., & Schall, P. (2009). Direct observation of colloidal aggregation by critical Casimir forces. Physical Review Letters, 103(15), 156101. https://doi.org/10.1103/PhysRevLett.103.156101[details]
Mäder, R., Widmer, R., Gröning, P., Deloudi, S., Steurer, W., Heggen, M., ... Gröning, O. (2009). High-resolution scanning tunneling microscopy investigation of the (12110) and (10000) two-fold symmetric d-Al-Ni-Co quasicrystalline surfaces. Physical Review B, 80(3), 035433. https://doi.org/10.1103/PhysRevB.80.035433[details]
Guo, H., Narayanan, T., Sztuchi, M., Schall, P., & Wegdam, G. H. (2008). Reversible phase transition of colloids in a binary liquid solvent. Physical Review Letters, 100(18), 188303. https://doi.org/10.1103/PhysRevLett.100.188303[details]
2011
Veen, S., Wegdam, G., & Schall, P. (2011). Colloïdale aggregatie en kristallisatie in de ruimte. Nederlands Tijdschrift voor Natuurkunde, 77(2), 46-49. [details]
2017
Schall, P. (2017). Aggregation of nanoparticles. (Patent No. WO 2017/109123).
2016
Dohnalová, K., Bruhn, B., Brenny, B. J. M., Dekker, S., & Schall, P. (2016). White emitting silicon nanocrystals – blue, green and red color centers. Poster session presented at E-MRS Spring 2016, .
Schall, P. (2016). Critical Casimir forces: new solvent fluctuation forces for nanoassembly. Abstract from CMD 26, Groningen, Netherlands.
Schall, P. (2016). Nonequilibrium Phase Transitions in Soft Material Rheology. Abstract from Gordon Research Conference, Ventura, United States.
2013
Dang, M. T., Zargar, R., Bonn, D., & Schall, P. (2013). Free energy transition of sheared colloidal glasses. Bulletin of the American Physical Society, 58.
Talk / presentation
van Dam, B. (speaker), Dohnalová, K. (speaker), Nie, H. (speaker), Bo, J. (speaker), Zhihe, L. (speaker), Marino, E. (speaker), Paulusse, J. M. J. (speaker) & Schall, P. (speaker) (2-5-2016). Multi-color emission from single carbon dots, E-MRS Spring 2016.
2017
Newton, A. C. (2017). Self-assembly via anisotropic interactions: Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces. [details]
Schyck, S., Baldauf, L., Rossi, L., Meijer, J.-M., Schall, P. & Petukhov, A. V. (2022). Data for "Self-assembly of colloidal superballs under spherical confinement of a drying droplet". 4TU.ResearchData. https://doi.org/10.4121/19122308.v1
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.