For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Sarvi, F., Heuss, M., Aliannejadi, M., Schelter, S., & de Rijke, M. (2022). Understanding and Mitigating the Effect of Outliers in Fair Ranking. In WSDM '22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining : February 21-25, 2022 : virtual event, Tempe, AZ, USA (pp. 861-869). Association for Computing Machinery. https://doi.org/10.1145/3488560.3498441[details]
2021
Ariannezhad, M., Jullien, S., Nauts, P., Fang, M., Schelter, S., & de Rijke, M. (2021). Understanding Multi-Channel Customer Behavior in Retail. In CIKM '21: proceedings of the 30th ACM International Conference on Information & Knowledge Management : November 1-5, 2021, virtual event, Australia (pp. 2867–2871). The Association for Computing Machinery. https://doi.org/10.1145/3459637.3482208[details]
Grafberger, S., Guha, S., Stoyanovich, J., & Schelter, S. (2021). MLINSPECT: A Data Distribution Debugger for Machine Learning Pipelines. In SIGMOD '21: proceedings of the 2021 International Conference on the Management of Data : June 20 -25, 2021, virtual event, China (pp. 2736–2739). Association for Computing Machinery. https://doi.org/10.1145/3448016.3452759[details]
Kersbergen, B., & Schelter, S. (2021). Learnings from a Retail Recommendation System on Billions of Interactions at bol.com. In 2021 IEEE 37th International Conference on Data Engineering: ICDE 2021 : proceedings : Chania, Greece, 19-22 April 2021 (pp. 2447-2452). (International Conference on Data Engineering; Vol. 37). IEEE Computer Society. https://doi.org/10.1109/ICDE51399.2021.00277[details]
Schelter, S., Grafberger, S., & Dunning, T. (2021). HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning. In SIGMOD '21: proceedings of the 2021 International Conference on the Management of Data : June 20 -25, 2021, virtual event, China (pp. 1545–1557). Association for Computing Machinery. https://doi.org/10.1145/3448016.3457239[details]
Sprangers, O., Schelter, S., & de Rijke, M. (2021). Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. In KDD ’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining : August 14-18, 2021, virtual event, Singapore (pp. 1510-1520). Association for Computing Machinery. https://doi.org/10.1145/3447548.3467278[details]
2020
Anil, R., Capan, G., Drost-Fromm, I., Dunning, T., Friedman, E., Grant, T., Quinn, S., Ranjan, P., Schelter, S., & Yılmazel, Ö. (2020). Apache Mahout: Machine Learning on Distributed Dataflow Systems. Journal of Machine Learning Research, 21, [127]. https://jmlr.csail.mit.edu/papers/v21/18-800.html[details]
Ariannezhad, M., Schelter, S., & de Rijke, M. (2020). Demand Forecasting in the Presence of Privileged Information. In V. Lemaire, S. Malinowski, A. Bagnall, T. Guyet, R. Tavenard, & G. Ifrim (Eds.), Advanced Analytics and Learning on Temporal Data: 5th ECML PKDD Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020 : revised selected papers (pp. 46-62). (Lecture Notes in Computer Science; Vol. 12588), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-65742-0_4[details]
Hendriksen, M., Kuiper, E., Nauts, P., Schelter, S., & de Rijke, M. (2020). Analyzing and Predicting Purchase Intent in E-commerce: Anonymous vs. Identified Customers. In The 2020 SIGIR Workshop On eCommerce: July 30 : accepted papers [23] SIGIR eCom'20. https://sigir-ecom.github.io/ecom20Papers/paper23.pdf[details]
Sarvi, F., Voskarides, N., Mooiman, L., Schelter, S., & de Rijke, M. (2020). A Comparison of Supervised Learning to Match Methods for Product Search. In The 2020 SIGIR Workshop On eCommerce: July 30 : accepted papers [30] SIGIR eCom'20. https://sigir-ecom.github.io/ecom20Papers/paper30.pdf[details]
Doehmen, T., Mühleisen, H. F., Raasveldt, M., & Schelter, S. (2021). Data Quality Assertions for Machine Learning Pipeline. Paper presented at Workshop on Challenges in Deploying and Monitoring ML Systems at ICML.
Grafberger, S., Stoyanovich, J., & Schelter, S. (2021). Lightweight Inspection of Data Preprocessing in Native Machine Learning Pipelines. Paper presented at Conference on Innovative Data Systems Research (CIDR) 2020, .
Grafberger, S., Stoyanovich, J., & Schelter, S. (2021). Lightweight Inspection of Data Preprocessing in Native Machine Learning Pipelines. Paper presented at Conference on Innovative Data Systems Research. http://cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
Redyuk, S., Kaoudi, Z., Markl, V., & Schelter, S. (2021). Automating Data Quality Validation for Dynamic Data Ingestion. Paper presented at International Conference on Extending Database Technology (EDBT 2021).
Schelter, S. (2021). Towards Efficient Machine Unlearning via Incremental View Maintenance. Paper presented at Workshop on Challenges in Deploying and Monitoring ML Systems at ICML. https://ssc.io/pdf/ivm-unlearning.pdf
Schelter, S., Rukat, T., & Biessmann, F. (2021). Jenga - A Framework to Study the Impact of Data Errors on the Predictions of Machine Learning Models. Paper presented at International Conference on Extending Database Technology (EDBT 2021).
Wang, L., & Schelter, S. (2021). Efficiently Maintaining Next Basket Recommendations under Additions and Deletions of Baskets and Items. Paper presented at Workshop on Online Recommender Systems and User Modeling at ACM RecSys. https://orsum.inesctec.pt/orsum2021/assets/files/paper1.pdf
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.