For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr E.A. (Erwin) van Vliet

Faculty of Science
Swammerdam Institute for Life Sciences
Photographer: Petra van Velzen

Visiting address
  • Science Park 904
Postal address
  • Postbus 94246
    1090 GE Amsterdam
  • E.A. van Vliet - Research

    Epilepsy Foundation project: The role of age-associated cerebrovascular changes in epilepsy

    Almost 65 million people suffer from epilepsy, making it to one of the most common neurological diseases worldwide. Epilepsy is a chronic disease affecting all ages, but the peak incidence is higher in the older population, rising from the age of 65. This may be explained by the predominance of brain diseases with epileptogenic potential (e.g. dementia and cerebrovascular diseases) and by the effects of the aging process through a number of molecular mechanisms, including vascular and inflammatory factors which are implicated in the aging process and can explain cognitive dysfunction in people with epilepsy. Recent findings show that older persons with epilepsy are more likely to suffer from cognitive dysfunction and that there might be an important bidirectional relationship between epilepsy and dementia. Since the world population is steadily growing and the number of older adults with epilepsy is set to rise substantially, the burden of epilepsy for the society is expected to be enormous in future. Therefore, measures must thus be taken to prevent seizures and epilepsy through the reduction of preventable epileptogenic factors. However, current anti-epileptic drug treatment does not adequately suppress seizures in 30% of all patients. Therefore, there is a pressing need for new therapeutic treatments. 

    We will test the hypothesis that age-associated cerebrovascular changes play an essential role in progressive blood-brain barrier dysfunction and contribute significantly to epileptogenesis and cognitive decline.

    Topconsortia for Knowledge and Innovation - Life Sciences & Health project:

    Circulating isomiRs: a novel approach to discover biomarkers for epilepsy

    Almost 65 million people suffer from epilepsy, making it to one of the most commonneurological diseases worldwide. Intractable epilepsy has a life-long effect on social and cognitive functioning and quality of life of patients. One of the major challenges in epilepsy research is the identification of reliable biomarkers that can be measured routinely in easily accessible samples, such as blood. Biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time. We propose that circulating isomiRs (recently discovered disease modified small non-coding RNA molecules) in blood reflect pathological changes in brain and can be used as biomarkers for epilepsy. To test this hypothesis, we will use an innovative and translational experimental approach. To identify biomarkers we will study changes of circulating isomiRs in the model in two cohorts (developing epilepsy or no epilepsy) using state-of-the-art techniques.  The approach outlined here has recently delivered biomarkers in cancer research, however, this has never been attempted in epilepsy.

    EPITARGET: Targets and biomarkers for antiepileptogenesis

    EPITARGET, a new FP7 Health project, started on 1 November 2013. The consortium is led by the University of Lund with Prof. Merab Kokaia as coordinator and includes members from Sweden, Germany, France, Finland, Italy, United Kingdom, Poland, the Netherlands and Israel. The work will be funded by the EC with nearly 12 million Euros in the course of the next five years.
    Epilepsy is a devastating condition affecting over 50 million people worldwide. Current antiepileptic drugs provide only symptomatic relief but cannot cure the condition. This is why EPITARGET is focused on identifying novel biomarkers for epileptogenesis to be able to explore new ways of how to treat epilepsy.


    Long-term, prospective study evaluating clinical and molecular biomarkers ofEPIleptogenesiS in a genetic model of epilepsy – Tuberous sclerOsis comPlex (EPISTOP)

    • About epilepsy

    Epilepsy affects 1% of the world’s population. In Europe, 6 million people have epilepsy (World Health Organization, 2010). In more than 65% of patients, epilepsy begins in childhood and the incidence of epilepsy is highest in the first year of life (Hauser, 1993). In children, the problem of epilepsy is far beyond seizures, as about 50% of children with epilepsy suffer from psychiatric and behavioural comorbidities, including developmental delay, learning disabilities, and autism spectrum disorder (Ono, 2012).

    • About Tuberous Sclerosis Complex

    Tuberous Sclerosis Complex (TSC) is a genetically determined neurocutaneous syndrome affecting 1 child in 6,000 (Curatolo, 2008). Molecular genetic studies have shown that there are two genes that cause TSC, TSC1 and TSC2, both of which are subject to heterozygous inactivating mutations in TSC. TSC is often considered an excellent clinical model of severe focal epilepsy, as 70 to 90% of patients are affected by epilepsy and in most cases the seizures are drug-resistant. In the majority of patients epilepsy manifests in the first months of life and half of patients develop cognitive impairment, autism spectrum disorder or other neurodevelopmental disturbances (Jozwiak, 1998). Epilepsy in TSC is often focal initially, but in many cases infantile spasms follow or coexist with focal seizures. Thirty-eight percent of TSC patients experience infantile spasms, and TSC accounts for 10% of all infantile spasms cases (Osborne, 2010). Therefore TSC is an excellent model for both focal epilepsy and infantile spasms. Although there is definite clinical heterogeneity, TSC represents a relatively homogenous group of patients for the studies of epileptogenesis,who are at high risk of this disease.

    • About prevention of epileptogenesis

    It is now widely accepted that clinical seizures are preceded by a latent period of epileptogenesis (Pitkanen, 2011, Rakhade, 2009). This cascade of cellular and molecular events may be triggered by diverse brain insults, including trauma, infection or genetic predisposition, and leads to the formation of hyperexcitable neural networks ultimately resulting in spontaneous epileptiform activity. This process continues with onset of clinical seizures, leading to the development of established, drug-resistant epilepsy, and secondary comorbidities. In humans, epileptogenesis studies are difficult because the patients usually present after seizures and little is known about the earlier stages of the disease. The molecular changes occurring during epileptogenesis in animal models are still not fully understood, but are known to include changes in gene expression, activation of several immune and inflammatory processes, and others. It has been shown in multiple animal models of epilepsy that interventions applied prior to the onset of clinical epilepsy can prevent or delay the development of seizures. Even if seizures occur, they may be seen at reduced frequency, may be of shorter duration, or of milder severity (Galanopoulou, 2012, Zeng, 2008). Attempts at preventative treatment for epilepsy in humans have been inconsistent, mainly due to the extreme heterogeneity of epilepsy mechanisms in different patients and the difficulty of identifying patients at risk. However, two recent studies of children with epileptiform activity recorded on electroencephalography (EEG) indicate that patients treated with standard antiepileptic drugs before the onset of clinical seizures may benefit from this approach (Jozwiak, 2011, van Rooij, 2010). Our study showed that treatment before onset of clinical seizures appeared to not only reduce the risk of clinical seizures, but also to modify the later phases of epileptogenesis, reducing the risk of both drug-resistance and neurodevelopmental delay associated with epilepsy (Jozwiak, 2011). Increasing numbers of TSC patients are diagnosed prenatally or soon after birth, through increasing awareness of this syndrome, and early detection of cardiac rhabdomyomas which are often detected on routine prenatal echocardiography. These tumours are present in over 80% of foetuses with TSC. When cardiac rhabdomyomas are detected, prenatal or neonatal brain MRI can be performed to confirm the diagnosis of TSC. This early diagnosis enables serial clinical observation BEFORE the onset of epilepsy, which usually starts at the age of 4-6 months. A prospective study of TSC infants before clinical seizures has been published by the Coordinating Investigator, Professor Sergiusz Jóźwiak, proving the feasibility of this approach. This study showed that 71% of all TSC infants develop epilepsy in the first 24 months of life.


    The extracellular matrix in epileptogenesis (ECMED) - A European training network

    Over 50 million people worldwide have epilepsy and 30% are resistant to our present therapies. Epilepsy, therefore, comprises a major burden to society and so there is a pressing need for new approaches to treatment. 

    The brain extracellular matrix (ECM) plays a critical role in governing brain excitability and function. This project brings together considerable expertise from academic and industry partners. This, therefore, represents a truly collaborative effort to determine not only the role of the ECM in the development of epilepsy but also novel approaches to treat and to prevent epilepsy.

    Scientific Aims

    • to understand the key mechanisms of epileptogenesis mediated by activity dependent remodelling of extracellular matrix

    • to detect and prevent changes in the ECM during early epileptogenesis

    • to develop ECM-targeting treatment strategies for “opening a window” for persistent structural normalisation of neural circuitries in late stages of epileptogenesis as well as in established epilepsy.

    Project Objectives

    • to understand remodelling of ECM during epileptogenesis, 

    • to identify ECM components or their degradation products that can serve as biomarkers for early diagnostics of epileptogenesis, 

    • to identify targets for prevention of epilepsy-related ECM alterations, 

    • to identify targets prompting restoration of neural connectivity during established epilepsy,

    • to validate biomarkers and treatment targets in pre-clinical animal models.


    Project: Characterization of ECM expression-regulating miRNAs in human focal epilepsy.

    Evidence is accumulating supporting the contribution of dysregulation in expression or activity of ECM molecules to pathological plasticity in the brain of patients with developmental epileptogenic lesions, as well as in patients with acquired forms of epilepsy. MicroRNAs (miRNAs) represent new class of post-transcriptional regulators of numerous biological processes within the central nervous system. miRNAs regulating different components of the ECM have been recently identified. 


    • Investigation and characterization at the cellular level of ECM expression-regulating miRNAs deregulated in different human epileptic disorders. 

    • Identification of ECM expression-regulating miRNAs as peripheral biomarkers.  


    The characterization of the expression pattern and the cellular distribution of miRNAs acting as potential regulators of ECM molecules will be performed using both real-time quantitative PCR analysis and combined in situ hybridization-immunohistochemistry in human specimens from patients who died after injury (status epilepticus or traumatic brain injury), as well as from patients with established epilepsy (hippocampal sclerosis and focal malformations of cortical development). microRNA overexpression and loss of function studies will be performed in vitro to further identify the exact role of selected miRNAs in the modulation of ECM signalling pathways in human astrocytes in culture.

    EU-GliaPhD - A European training network

    The brain is the most complex, but also the most vulnerable part of our body. “How does the brain work?” has been among the most frequently asked questions for more than centuries. Elucidation of molecular and cellular mechanisms of brain function is a prerequisite to understand its pathologies and to develop novel and better therapies. Therefore, training and education of neuroscientists will be of paramount importance to the future prosperous development of the European countries.

    The EU-GliaPhD consortium has defined the following aims in a novel European Training Network funded by EU Horizon 2020:

    • to train the future generation of neuroscientists
    • to enhance and improve the communication with the public
    • to establish inter-sectorial collaborations between academia and industry

    Research on brain function is of paramount importance to develop better therapies. It is essential to disseminate research results, but also to learn more about patients’ priorities and to help them and their families in understanding the disease burden.

    To address these aims established European neuroscientists joint forces with two industrial partners to form the innovative European Training Network EU-GliaPhD. Our network is complemented by four associated partner organisations from the private sector contributing to training, dissemination, outreach and management. Thereby, the training-by-research programme of the EU-GliaPhD early-stage researchers will be highly inter-sectorial, addressing academic AND industrial research requirements as well as bidirectional interactions with the public via social media and face-to-face with patients’ organisations.

    The research of the EU-GliaPhD principal investigators addresses mechanisms of cell-cell communication in the healthy and the diseased brain. The technical expertise covers mouse and human genetics, immunohistochemistry, molecular and cellular biology, advanced microscopy and electrophysiology in vivo and in situ, large neuronal ensemble recordings in freely moving animals, high throughput drug screening and development of novel research instrumentation. 

    Project: Noncoding RNAs (ncRNAs) and inflammation: new strategies to target epileptogenesis

    Objectives: To examine the non-coding (nc) RNA expression profile of intracellular and extracellular miRNAs upon exposure to inflammatory molecules in human astrocytes. 

    Methodology: To study the effect of silencing or overexpression of ncRNAs involved in the regulation of astrocyte-mediated inflammatory response on ictogenesis in vitro and in vivo. In this proposal the translational regulation of astroglial proteins involved in inflammatory responses will be investigated using human astrocyte cultures. In particular the effect of inhibition or overexpression of specific short ncRNAs (microRNAs; miRNAs) and long ncRNA on the production of inflammatory mediators will be evaluated.

    Epilepsy Foundation project: Matrix metalloproteinases as new target for epilepsy

    Current therapies in epilepsy are aimed at pharmacologically suppressing seizures in the chronic epileptic phase; however they are not aimed at preventing epilepsy or modifying epileptogenesis. To prevent the latter constitute the main challenge in epilepsy research and disease management.

    Recent advances suggest that matrix metalloproteinases (MMPs), a specific class of extracellular matrix proteins, may be a novel target.

    Our hypothesis builds upon these advances and we hypothesize that increased expression and activation of MMPs after brain injury play an essential role in persistent blood-brain barrier dysfunction and contribute significantly to epileptogenesis. Therefore, we will study the role of MMPs in relation to blood-brain barrier dysfunction and epileptogenesis. Furthermore, we aim to target MMPs using inhibitors in order to restore the blood-brain barrier and modify epileptogenesis. This innovative approach will lead to novel insights into the role of MMPs during epileptogenesis and will help to develop new anti-epileptogenic treatments.

    artikel 'Onderzoek naar vaatlekkage in de hersenen' uit Epilepsie Magazine.

    Veni project: The role of blood-brain barrier disruption in the progression of epilepsy

    Mesial Temporal Lobe Epilepsy (MTLE) is a progressive neurological disorder and the most frequent type of epilepsy in adults. MTLE is often preceded by an initial insult that after a latent period leads to recurrent seizures. The main aim is to characterize mechanisms of seizure progression in epilepsy. Recent studies indicate that the blood-brain barrier (BBB; a defense mechanism that protects the brain against blood components) may be a new target. BBB leakage has been shown in epileptic humans and animals and is associated with epileptic activity and inflammation. We recently showed that artificial opening of the BBB increased seizure frequency.

    However, the precise factors that contribute to progression of epilepsy are not known. It is also not known whether restoration of the BBB could lead to a milder form of epilepsy or even prevent the development of epilepsy. First, we will study whether the extent of BBB disruption during the early epileptogenic phase is predictive of seizure outcome in the chronic epileptic phase using Magnetic Resonance Imaging (MRI). Since BBB disruption leads to intrusion of (white) blood cells and plasma derived substances we will also use cellular imaging techniques (MR, confocal and voltage sensitive dye imaging) to determine the effects of these compounds on neuronal and glial network dynamics and on seizure progression. Finally, we will study whether anti-inflammatory therapies have disease modifying therapeutic effects in epilepsy.

    Harry Meinardi Dissertation Award 2010

    De Harry Meinardi proefschriftprijs is dit jaar tijdens het Nationaal Epilepsie Symposium op vrijdag 28 mei uitgereikt aan Dr. Erwin van Vliet van de Universiteit van Amsterdam. Van Vliet ging in zijn proefschrift in op temporaalkwabepilepsie. Door deze ernstige vorm van epilepsie blijft ruim 30 procent van de mensen met epilepsie last houden van aanvallen, ondanks het gebruik van medicijnen. 

    Onderzoek naar de rol van bloedhersenbarrière
    De hersenen worden goed beschermd tegen vreemde stoffen die via de bloedbaan naar binnen willen dringen. Dat is goed voor de hersenen, maar een groot probleem voor farmacotherapie. Op de bloedvatwand bevinden zich drugtransporters die de hersenen beschermendoor actief ongewenste stoffen en medicijnen terug te pompen naar de bloedbaan. Uit van Vliet's onderzoek blijkt dat het toedienen van een transporterremmer een goede strategie is om farmacoresistentie te omzeilen.
    Van Vliet en zijn collega's hebben ook aangetoond dat de bloedvaten die de bloedhersenbarrière vormen, beschadigd worden door een zware epileptische aanval. Hierdoor dringen bloedeiwitten en witte bloedcellen de hersenen binnen. Die vreemde stoffen verergeren op hun beurt de ontstekingsreactie in het brein waardoor zowel de epileptische activiteit als de activiteit van de drugtransporters toeneemt. 

    Harry Meinardi proefschriftprijs                                     
    De Harry Meinardi proefschriftprijs is een nieuw initiatief en wordt voortaan eens in de twee jaar uitgereikt voor het meest baanbrekende of veelbelovende proefschrift over epilepsie. Aan deze proefschriftprijs is een oorkonde en een geldbedrag van € 2.500 verbonden.

    Epilepsie Fonds
    Harry Meinardi Dissertation Award: best dissertation about epilepsy from the Netherlands and Belgium between 2007-2010. The award is presented by prof. dr. J. Troost

    Dissertation Erwin van Vliet

    Mesial Temporal Lobe Epilepsy is a severe form of epilepsy in adults that often cannot be controlled with antiepileptic drugs. Considering the fact that epilepsy is one of the most common neurological disorders,pharmacoresistance is a major health issue. Insights into the mechanisms that are involvedin pharmacoresistance may ultimately lead to a therapy for pharmacoresistant epilepsy patients. The aim of the research described in my thesis is to investigate the role of the blood-brain barrier and multidrug transporters in pharmacoresistant epilepsy. My thesis provides evidence that multidrug transporters play an important role in pharmacoresistance by reducing antiepileptic drug levels in specific brain regions and shows thatseizures can be controlled by pharmacological inhibition of multidrug transporters.

    Alternatively, an anti-epileptic drug that is not transported by multidrug transporters (levetiracetam) also initially controlled seizures. However, the effects of both these therapeutic approaches were transient.
    The development of tolerance indicates that, in addition to overexpression of multidrug transporters, other mechanisms of pharmacoresistance are relevant. Future research should therefore not be limited to multidrug transporters but should also include anti-epileptic drug properties and their targets.

    Erwin van Vliet - The role of the blood-brain barrier and multidrug transporters in pharmacoresistant epilepsy: studies in a rat model for temporal lobe epilepsy (2007)

    Publieksdag Hersenstichting Nederland 2013

    In 2013 wordt voor de 21e keer de Publieksdag over de hersenen gehouden.
    Donderdag 10 oktober 2013 vertellen weer diverse wetenschappers over hun onderzoek. Het thema in 2013 is: Gezonde hersenen?

    Publieksdag Hersenstichting Nederland 2013, Utrecht.

    Brain Awareness Week 2012

    Brain Awareness Week 2012 @ The British School in The Netherlands, Voorschoten.

    The Brain Awareness Week campaign unites families, schools, and communities in a worldwide celebration of the brain. The Dana Alliance for Brain Initiatives founded the now-global campaign in 1996. Since its start, more than 2,800 partners in 82 countries have participated in the campaign. The Society for Neuroscience and many others serve as partners.  

    Brain Awareness Week at the British School in The Netherlands, Voorschoten.
  • E.A. van Vliet - Teaching

    Feedback GO: Didactically responsible use of tools for personalized feedback in online large-scale education

    The website for the SURF project Feedback GO has been launced! See (in Dutch).



    The first experiences with IguideME presented at the SURF Education Days 2021

    The use of learning analytics/AI in education was one of the trending topics during the 23rd edition of the SURF Education Days 2021. In the session 'Guiding students through the use of data', Erwin van Vliet talked about the use of IguideME (I Guide My Education), a dashboard that was developed at the Faculty of Science (UvA) and is used to provide personalized feedback to (a large group of) students and the teacher.

    More information see this blog in Dutch or this blog in English.

    Perusall Exchange 2021

    During the Perusall Exchange 2021 meeting on 17th May we presented how we “institutionalized” Perusall at the University of Amsterdam. 

    See the presentation here

    Teacher story Erwin van Vliet - Perusall: Every Student Prepared for Every Lecture

    In 2019, assistant professor Erwin van Vliet was awarded a Grassroots grant for developing the UvA application of the online learning platform Perusall. Now, there are over 250 courses making use of this tool, and their number is still growing. See whole story via link below.


    Comenius Teaching Fellow toegekend aan FNWI-docent Erwin van Vliet

    Comenius Teaching Fellow toegekend aan FNWI-docent Erwin van Vliet

    UvA Teaching & Learning Centre Webinar "Perusall: every student prepared for every class"

    download slides 

    Perusall - every student prepared for every class

    See blog about the Grassroot program "Perusall-FNWI" (project leader Erwin van Vliet):

    reading assignment, confusion report, automated analysis, social learning platform

    Interactive teaching for large groups

    For best practice see:

    flipped classroom, interaction in the classroom, large groups, methods to enhance interaction, student activation, voting, team based learning

    Flipped-Class Pedagogy Enhances Student Metacognition and Collaborative-Learning Strategies in Higher Education But Effect Does Not Persist

    In flipped-class pedagogy, students prepare themselves at home before lectures, often by watching short video clips of the course contents. The aim of this study was to investigate the effects of flipped classes on motivation and learning strategies in higher education using a controlled, pre- and posttest approach. The same students were followed in a traditional course and in a course in which flipped classes were substituted for part of the traditional lectures. On the basis of the validated Motivated Strategies for Learning Questionnaire (MSLQ), we found that flipped-class pedagogy enhanced the MSLQ components critical thinking, task value, and peer learning. However, the effects of flipped classes were not long-lasting. We therefore propose repeated use of flipped classes in a curriculum to make effects on metacognition and collaborative-learning strategies sustainable.

    Van Vliet et al., CBE Life Sci Educ 2015,14(3):1-10

    Good practice video “peer instruction using voting system”:

    Education award

    In january 2013 Erwin van Vliet recieved the education award: most innovative teacher of the year, University of Amsterdam, Swammerdam Institute for Life Sciences

    Education award: most innovative teacher of the year presented by prof. dr. W.J. Stiekema (director UvA-SILS)
    Link to SILS-CNS
  • Thesis gallery

    Till Zimmer - The epileptogenic trinity: oxidative stress, brain inflammation and iron in epilepsy (2021)

    Diede Broekaart - Breaking the vicious cycle of epileptogenesis: focus on brain inflammation and matrix metalloproteinases (2020)

    Anatoly Korotkov - The role of microRNAs in epileptogenesis: modulation of brain inflammation and the extracellular matrix (2020)

    Jackelien van Scheppingen - Astrocytes as mediators of inflammation in epilepsy: focus on tuberous sclerosis complex (2018)

  • Publications



    • Broekaart, D. W. M., Bertran, A., Jia, S., Korotkov, A., Senkov, O., Bongaarts, A., Mills, J. D., Anink, J. J., Seco, J., Baaijen, J. C., Idema, S., Chabrol, E., Becker, A., Wadman, W. J., Tarragó, T., Gorter, J. A., Aronica, E., Prades, R., Dityatev, A., & van Vliet, E. A. (2021). The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. The journal of clinical investigation, 131(1), [e138332]. [details]
    • Broekaart, D. W. M., Korotkov, A., Gorter, J. A., & van Vliet, E. A. (2021). Perivascular inflammation and extracellular matrix alterations in blood-brain barrier dysfunction and epilepsy. In D. Jangiro, A. Nehlig, & N. Marchi (Eds.), Inflammation and epilepsy: new vistas (pp. 71-106). (Progress in Infammation Research; Vol. 88). Springer. [details]
    • Korotkov, A., Sim, N. S., Luinenburg, M. J., Anink, J. J., van Scheppingen, J., Zimmer, T. S., Bongaarts, A., Broekaart, D. W. M., Mijnsbergen, C., Jansen, F. E., Van Hecke, W., Spliet, W. G. M., van Rijen, P. C., Feucht, M., Hainfellner, J. A., Kršek, P., Zamecnik, J., Crino, P. B., Kotulska, K., ... Aronica, E. (2021). MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis. Neuropathology and Applied Neurobiology, 47(6), 796-811. [details]
    • Leitner, D. F., Mills, J. D., Pires, G., Faustin, A., Drummond, E., Kanshin, E., Nayak, S., Askenazi, M., Verducci, C., Chen, B. J., Janitz, M., Anink, J. J., Baayen, J. C., Idema, S., van Vliet, E. A., Devore, S., Friedman, D., Diehl, B., Scott, C., ... Devinsky, O. (2021). Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients. Neurology, 96(21), e2639-e2652. [details]
    • Vila Verde, D., Zimmer, T., Cattalini, A., Pereira, M. F., van Vliet, E. A., Testa, G., Gnatkovsky, V., Aronica, E., & de Curtis, M. (2021). Seizure activity and brain damage in a model of focal non-convulsive status epilepticus. Neuropathology and Applied Neurobiology, 47(5), 679-693. [details]
    • Zimmer, T. S., Broekaart, D. W. M., Luinenburg, M., Mijnsbergen, C., Anink, J. J., Sim, N. S., Michailidou, I., Jansen, F. E., van Rijen, P. C., Lee, J. H., François, L., van Eyll, J., Dedeurwaerdere, S., van Vliet, E. A., Mühlebner, A., Mills, J. D., & Aronica, E. (2021). Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathology and Applied Neurobiology, 47(6), 826-839. [details]
    • Zimmer, T. S., David, B., Broekaart, D. W. M., Schidlowski, M., Ruffolo, G., Korotkov, A., van der Wel, N. N., van Rijen, P. C., Mühlebner, A., van Hecke, W., Baayen, J. C., Idema, S., François, L., van Eyll, J., Dedeurwaerdere, S., Kessels, H. W., Surges, R., Rüber, T., Gorter, J. A., ... Aronica, E. (2021). Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathologica, 142(4), 729-759. [details]
    • Zimmer, T. S., Korotkov, A., Zwakenberg, S., Jansen, F. E., Zwartkruis, F. J. T., Rensing, N. R., Wong, M., Mühlebner, A., van Vliet, E. A., Aronica, E., & Mills, J. D. (2021). Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathology, 31(5), [e12949]. [details]
    • de Curtis, M., Rossetti, A. O., Vila Verde, D., van Vliet, E. A., & Ekdahl, C. T. (2021). Brain pathology in focal status epilepticus: Evidence from experimental models. Neuroscience and Biobehavioral Reviews, 131, 834-846. [details]








    • Bielefeld, P., van Vliet, E. A., Gorter, J. A., Lucassen, P. J., & Fitzsimons, C. P. (2014). Different subsets of newborn granule cells: a possible role in epileptogenesis? European Journal of Neuroscience, 39(1), 1-11. [details]
    • Gorter, J. A., Iyer, A., White, I., Colzi, A., van Vliet, E. A., Sisodiya, S., & Aronica, E. (2014). Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiology of Disease, 62, 508-520. [details]
    • Holtman, L., van Vliet, E., Appeldoorn, C., Gaillard, P. J., de Boer, M., Dorland, R., Wadman, W., & Gorter, J. (2014). Glutathione pegylated liposomal methylprednisolone administration after the early phase of status epilepticus did not modify epileptogenesis in the rat. Epilepsy Research, 108(3), 396-404. [details]
    • Zellinger, C., Salvamoser, J. D., Soerensen, J., van Vliet, E. A., Aronica, E., Gorter, J., & Potschka, H. (2014). Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701, 324 improves pharmacosensitivity in a mouse kindling model. Epilepsy Research, 108(4), 634-643. [details]
    • van Vliet, E. A., Aronica, E., & Gorter, J. A. (2014). Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience, 277, 455-473. [details]
    • van Vliet, E. A., Otte, W. M., Gorter, J. A., Dijkhuizen, R. M., & Wadman, W. J. (2014). Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study. Neurobiology of Disease, 63, 74-84. [details]


    • Holtman, L., van Vliet, E. A., Aronica, E., Wouters, D., Wadman, W. J., & Gorter, J. A. (2013). Blood plasma inflammation markers during epileptogenesis in post-status epilepticus rat model for temporal lobe epilepsy. Epilepsia, 54(4), 589-595. [details]
    • Qiao, X., Werkman, T. R., Gorter, J. A., Wadman, W. J., & van Vliet, E. A. (2013). Expression of sodium channel α subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy. Epilepsy Research, 106(1-2), 17-28. [details]


    • Zurolo, E., de Groot, M., Iyer, A., Anink, J., van Vliet, E. A., Heimans, J. J., Reijneveld, J. C., Gorter, J. A., & Aronica, E. (2012). Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 β. Journal of neuroinflammation, 9, [280]. [details]
    • van Vliet, E. A., Forte, G., Holtman, L., den Burger, J. C. G., Sinjewel, A., de Vries, H. E., Aronica, E., & Gorter, J. A. (2012). Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia, 53(7), 1254-1263. [details]


    • Aronica, E., Zurolo, E., Iyer, A., de Groot, M., Anink, J., Carbonell, C., van Vliet, E. A., Baayen, J. C., Boison, D., & Gorter, J. A. (2011). Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia, 52(9), 1645-1655. [details]
    • Holtman, L., van Vliet, E. A., Baas, F., Aronica, E., & Gorter, J. A. (2011). Complement protein 6 deficiency in PVG/c rats does not lead to neuroprotection against seizure induced cell death. Neuroscience, 188, 109-116. [details]
    • van Vliet, E. A., Holtman, L., Aronica, E., Schmitz, L. J. M., Wadman, W. J., & Gorter, J. A. (2011). Atorvastatin treatment during epileptogenesis in a rat model for temporal lobe epilepsy. Epilepsia, 52(7), 1319-1330. [details]


    • Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E. A., Baayen, J. C., & Gorter, J. A. (2010). Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience, 31(6), 1100-1107. [details]
    • Gorter, J. A., Zurolo, E., Iyer, A., Fluiter, K., van Vliet, E. A., Baayen, J. C., & Aronica, E. (2010). Induction of sodium channel Nax (SCN7A) expression in rat and human hippocampus in temporal lobe epilepsy. Epilepsia, 51(9), 1791-1800. [details]
    • Holtman, L., van Vliet, E. A., Edelbroek, P. M., Aronica, E., & Gorter, J. A. (2010). Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Research, 91(1), 49-56. [details]
    • van Vliet, E. A., Edelbroek, P. M., & Gorter, J. A. (2010). Improved seizure control by alternating therapy of levetiracetam and valproate in epileptic rats. Epilepsia, 51(3), 362-370. [details]
    • van Vliet, E. A., Zibell, G., Pekcec, A., Schlichtiger, J., Edelbroek, P. M., Holtman, L., Aronica, E., Gorter, J. A., & Potschka, H. (2010). COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology, 58(2), 404-412. [details]




    • Aronica, E., de Boer, K., van Vliet, E. A., Redeker, S., Baayen, J. C., Spliet, W. G. M., van Rijen, P. C., Troost, D., Lopes da Silva, F. H., Wadman, W. J., & Gorter, J. A. (2007). Complement activation in experimental and human temporal lobe epilepsy. Neurobiology of Disease, 26(3), 497-511. [details]
    • Gorter, J. A., van Vliet, E. A., Rauwerda, H., Breit, T. M., Stad, R., van Schaik, R., Vreugdenhil, E., Redeker, S., Hendriksen, E., Aronica, E., Lopes da Silva, F. H., & Wadman, W. J. (2007). Dynamic changes of proteases and protease inhibitors revealed by microarray analysis in CA3 and entorhinal cortex during epileptogenesis in the rat. Epilepsia, 48(5), 53-64. [details]
    • van Vliet, E. A. (2007). Therapieresistentie: te strenge controle bij Checkpoint Charley? Episcoop, 3, 22-24. [details]
    • van Vliet, E. A., & Gorter, J. A. (2007). Reply: Complexities in the association of human blood-brain barrier disruption with seizures: importance of patient population and method of disruption. Brain, 130(8), e78. [details]
    • van Vliet, E. A., da Costa Araujo, S., Redeker, S., van Schaik, R., Aronica, E., & Gorter, J. A. (2007). Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain, 130(2), 521-534. [details]
    • van Vliet, E. A., van Schaik, R., Edelbroek, P. M., Voskuyl, R. A., Redeker, S., Aronica, E., Wadman, W. J., & Gorter, J. A. (2007). Region-Specific Overexpression of P-glycoprotein at the Blood-Brain Barrier Affects Brain Uptake of Phenytoin in Epileptic Rats. The Journal of Pharmacology and experimental Therapeutics, 322, 141-147. [details]


    • Gorter, J. A., van Vliet, E. A., Aronica, E. M. A., Breit, T. M., Rauwerda, J., Lopes da Silva, F. H., & Wadman, W. J. (2006). Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. The Journal of Neuroscience, 26(43), 11083-11110. [details]
    • van Vliet, E. A., van Schaik, R., Edelbroek, P. M., Redeker, A. M. J., Aronica, E. M. A., Wadman, W. J., De Marchi, N., Vezzani, A., & Gorter, J. A. (2006). Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia, 47(4), 672-680. [details]


    • Aronica, E. M. A., Gorter, J. A., Redeker, S., van Vliet, E. A., Ramkema, M., Scheffer, G. L., Scheper, R. J., van der Valk, P., Leenstra, S., Baayen, J. C., Spliet, W. G. M., & Troost, D. (2005). Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia, 46(6), 849-857. [details]
    • Gorter, J. A., Mesquita, A. R. M., van Vliet, E. A., Lopes da Silva, F. H., & Aronica, E. M. A. (2005). Increased expression of ferritin, an iron-storage protein, in specific regions of the parahippocampal cortex of epileptic rats. Epilepsia, 46(9), 1371-1379. [details]
    • Tolner, E. A., Kloosterman, F., van Vliet, E. A., Witter, M. P., Lopes da Silva, F. H., & Gorter, J. A. (2005). Presubiculum stimulation in vivo evokes distinct oscillations in superficial and deep entorhinal cortex layers in chronic epileptic rats. The Journal of Neuroscience, 25, 8755-8765. [details]
    • van Vliet, E. A., Redeker, A. M. J., Aronica, E. M. A., Edelbroek, P. M., & Gorter, J. A. (2005). Expression of Multidrug transporters MRP1, MRP2 and BCRP shortly after status epilepticus during the latent period, and in chronic epileptic rats. Epilepsia, 46, 1569-1580. [details]


    • Aronica, E., Gorter, J. A., Ramkema, M., Redeker, S., Ozbas-Gercer, F., van Vliet, E. A., Scheffer, G. L., Scheper, R. J., van der Valk, P., Baayen, J. C., & Troost, D. (2004). Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia, 45(5), 441-451. [details]
    • van Vliet, E. A., Aronica, E., Redeker, S., & Gorter, J. A. (2004). Expression and Cellular Distribution of Major Vault Protein: A Putative Marker for Pharmacoresistance in a Rat Model for Temporal Lobe Epilepsy. Epilepsia, 45(12), 1506-1516. [details]
    • van Vliet, E. A., Aronica, E., Redeker, S., De Marchi, N., Rizzi, M., Vezzani, A., & Gorter, J. A. (2004). Selective and persistent upregulation of mdr1b mRNA and P-glycoprotein in the parahippocampal cortex of chronic epileptic rats. Epilepsy Research, 60, 203-213. [details]
    • van Vliet, E. A., Aronica, E., Tolner, E. A., Lopes da Silva, F. H., & Gorter, J. A. (2004). Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Experimental Neurology, 187, 367-379. [details]


    • Aronica, E. M. A., Gorter, J. A., van Vliet, E. A., Spliet, W. G. M., van Veelen, C. W. M., van Rijen, P. C., Leenstra, S., Ramkema, M. D., Scheffer, G. L., Scheper, R. J., Sisodiya, S. M., & Troost, D. (2003). Overexpression of the human major vault protein in gangliogliomas. Epilepsia, 44(9), 1166-1175. [details]
    • Gorter, J. A., Goncalves Pereira, P. M., van Vliet, E. A., Aronica, E. M. A., Lopes da Silva, F. H., & Lucassen, P. J. (2003). Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia, 44, 647-658. [details]
    • Tolner, E. A., van Vliet, E. A., Holtmaat, A. J. G. D., Aronica, E., Witter, M. P., Lopes da Silva, F. H., & Gorter, J. A. (2003). GAP-43 mRNA and protein expression in the hippocampal and parahippocampal region during the course of epileptogenesis in rats. European Journal of Neuroscience, 17, 2369-2380. [details]


    • Gorter, J. A., Borgdorff, J. A., van Vliet, E. A., Lopes da Silva, F. H., & Wadman, W. J. (2002). Differential and long-lasting alterations of high-voltage activated calcium currents in CA1 and dentate granule neurons after status epilepticus. European Journal of Neuroscience, 16(4), 701-712. [details]
    • Gorter, J. A., van Vliet, E. A., Aronica, E., & Lopes da Silva, F. H. (2002). Long-lasting increased excitability differs in dentate gyrus vs. CA1 in Freely moving chronic epileptic rats after electrically induced status epilepticus. Hippocampus, 12, 311-324. [details]
    • Gorter, J. A., van Vliet, E. A., Lopes da Silva, F. H., Isom, L. L., & Aronica, E. (2002). Sodium channel beta1-subunit expression is increased in reactive astrocytes in a rat model for mesial temporal lobe epilepsy [short communication]. European Journal of Neuroscience, 16, 360-364. [details]
    • Gorter, J. A., van Vliet, E. A., Proper, E. A., de Graan, P. N., Ghijsen, W. E. J. M., Lopes da Silva, F. H., & Aronica, E. (2002). Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats. The journal of comparative neurology, 442(4), 365-77. [details]


    • Aronica, E., Vandeputte, D. A. A., van Vliet, E. A., Lopes da Silva, F. H., Trootst, D., & Gorter, J. A. (2001). Expression of Id proteins increases in astrocytes in the hippocampus of epileptic rats. NeuroReport, 12, 1-5. [details]
    • Aronica, E., Yankaya, B., Troost, D., van Vliet, E. A., Lopes da Silva, F. H., & Gorter, J. A. (2001). Induction of neonatal sodium channel II and III alpha-isoform mRNAs is in neurons and microglia after status epilepticus in the rat hippocampus. European Journal of Neuroscience, 13(6), 1261-1266. [details]
    • Aronica, E., van Vliet, E. A., Hendriksen, E., Troost, D., Lopes da Silva, F. H., & Gorter, J. A. (2001). Cystatin C, a cysteine protease inhibitor, is persistently up-regulated in neurons and glia in a rat model for mesial temporal lobe epilepsy. European Journal of Neuroscience, 14(9), 1485-1491. [details]
    • Gorter, J. A., van Vliet, E. A., Aronica, E., & Lopes da Silva, F. H. (2001). Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin immunoreactive neurons. European Journal of Neuroscience, 13(4), 657-669. [details]
    • Hendriksen, H., Datson, N. A., Ghijsen, W. E. J. M., van Vliet, E. A., Lopes da Silva, F. H., Gorter, J. A., & Vreugdenhil, E. (2001). Altered hippocampal gene expression prior to the onset of spontaneaous seizures in the rat post-status epilepticus model. European Journal of Neuroscience, 14, 1475-1484. [details]
    • Ketelaars, S. O. M., Gorter, J. A., van Vliet, E. A., Lopes da Silva, F. H., & Wadman, W. J. (2001). Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy. Neuroscience, 105, 109-120. [details]


    • Aronica, E., van Vliet, E. A., Maiboroda, O. A., Troost, D., Lopes da Silva, F. H., & Gorter, J. A. (2000). Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. European Journal of Neuroscience, 12, 1-12. [details]
    • Lopes da Silva, F. H., Pijn, J. P., Gorter, J. A., van Vliet, E. A., Daalman, E. W., & Blanes, W. (2000). Rhythms of the brain: between randomness and determinism. In K. Lehnertz, J. Arnold, P. Grassberger, & C. E. Elger (Eds.), Chaos in Brain (pp. 63-76). World Scientific Publishing. [details]


    • van Vliet, E. (2017). Leadership Development Program Scholarship, International League Against Epilepsy, Barcelona, Spain.
    • van Vliet, E. A. (2013). Personal Short Term Scientific Mission Grant.
    • van Vliet, E. A. (2012). Education Award - Most Innovative Teacher.
    • van Vliet, E. A. (2012). Personal Short Term Scientific Mission Grant.
    • van Vliet, E. A. (2010). The role of the blood-brain barrier and multidrug transporters in pharmacoresistant epilepsy’.
    • van Vliet, E. A. (2009). Personal VENI grant, The Netherlands Organisation for Scientific Research (NWO).
    • van Vliet, E. A. (2006). Long-lasting increased permeability of the blood-brain barrier during progression of epilepsy..




    • van Scheppingen, J. G. M. (2018). Astrocytes as mediators of inflammation in epilepsy: focus on tuberous sclerosis complex. [details]


    • van Vliet, E. A. (2007). The role of the blood-brain barrier and multidrug transporters in pharmacoresistant epilepsy : studies in a rat model for temporal lobe epilepsy. Ipskamp. [details]


    • Vila Verde, D., Zimmer, T., Cattalini, A., Pereira, M. F., van Vliet, E. A., Testa, G., Gnatkovsky, V., Aronica, E. & de Curtis, M. (20-1-2022). Dataset related to article "Seizure activity and brain damage in a model of focal non-convulsive status epilepticus". Zenodo.
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • AMC